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4. The alternating groups

(E4.1) Every element of Sym(Ω) can be written as a finite product of transpositions.2

(E4.2) If Ω is an infinite set, then one defines the finitary symmetric group to be the set of all
permtuations that fix all but a finite number of elements of Ω.

(1) Prove that FinSym(Ω) is a group.
(2) Prove that FinSym(Ω) is generated by the set of all transpositions.
(3) Prove that the function sgn given at (3) is a group homomorphism from FinSym(Ω) to C2.
(4) (Harder) Prove that the kernel of sgn (known as the finitary alternating group) is an infinite

simple group.

(E4.3) Let g, h be two elements of Sym(Ω). Then g and h are conjugate in Sym(Ω) if and only if
they have the same cycle type.

(E4.4)Let C be a conjugacy class of Sym(Ω) corresponding to partition 1n12n23n3 · · · . Then C ⊂
Alt(Ω) if and only if

n2 + n4 + n6 + · · ·
is even.

(E4.5) Let C be a conjugacy class of Sym(n) of type 1a12a23a3 · · · . Suppose that g ∈ C ⊂ Alt(n).
The following are equivalent:

(1) C is the union of two conjugacy class of Alt(n);
(2) ai ≤ 1 for all i, with ai = 0 for all even i.

(E4.6) Prove that, if n ≥ 5 and C is a non-trivial conjugacy class of Alt(n), then |C| > n.
(E4.7) The set C is the union of a number of conjugacy classes, C1, . . . , Ck, of N ; the classes C1, . . . Ck

are of equal size; finally k divides |G : N |.
(E4.8) Write down the subgroup lattice of Alt(4). Identity which subgroups are normal and thereby

demonstrate that Alt(4) is not simple. Prove that Alt(2) and Alt(3) are simple and abelian.
(E4.9) Prove that the group Alt(n) is generated by the set of all 3-cycles (a 3-cycle is an element of

cycle type 1n−331). Show, in fact, that the following set of 3-cycles is sufficient to generate Alt(n):

{(1, 2, i) | i = 3, . . . , n}.

(E4.10) Suppose that the action of H on K is the trivial action. What is K �φ H?
(E4.11) Suppose that K is a normal subgroup of a group G with G/K isomorphic to a group H.

The extension H.K is split if and only if G contains a subgroup J such that G = JK and J ∩K = {1}.
(E4.12) Prove that, for all integers n ≥ 2, Sym(n) ∼= Alt(n) : C2.
(E4.13) Find an example of a group G = K.H (where K and H are both non-trivial finite groups)

which is non-split. Hint: there is precisely one example with |G| ≤ 7, and it is abelian. The smallest
non-abelian examples have |G| = 8.
(E4.14) Write down as many groups G as you can, for which G = K.H where K ∼= A6 and H ∼= C2.

Identify those that can be written as split extensions.
(E4.15) Prove that if H ≤ NG(K), then HK = KH, and HK is a group.
(E4.16)Prove that a group G is almost simple if and only if the following two conditions hold:

(1) G contains a normal subgroup S that is non-abelian and simple;
(2) any non-trivial normal subgroup of G contains S.

(E4.17)Prove that Sym(n) is almost simple for n ≥ 5.
(E4.18) (Hard) How many almost simple groups (up to isomorphism) have a normal subgroup

isomorphic to Alt(6)?
(E4.19)If n ≥ 3 and n �= 6, then any automorphism of Sym(n) is inner. Thus Aut(Sym(n)) =

Sym(n).

2Put another way - and using terminology introduced in the previous chapter - this exercise asserts, precisely, that
Sym(Ω) is generated by the set of all transpositions.
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(E4.20)Let φ be an automorphism of a group G and let g, h ∈ G. Then

• g and h have the same order;
• CG(g) ∼= CG(φ(g));
• If g and h are conjugate in G, then φ(g) and φ(h) are conjugate in G.3

(E4.21) Suppose that H is a subgroup of a group G and suppose that, for all g ∈ G, g2 ∈ H. Then
|G : H| ≤ 2. Is this result true for integers other than 2?

(E4.22)Prove that Alt(5) contains 6 Sylow 5-subgroups.
(E4.23)Prove that, in fact, H �→ Alt(6). Prove, moreover, that H has 6 distinct conjugates in

Alt(6).
(E4.24)Prove that this isomorphism is not induced by an element of Sym(6).
(E4.25) Let Ω be a finite set of order n, and let Γ be a subset of Ω with |Γ| = k.

(1) There is a unique subgroup G of Sym(Ω) that preserves Γ setwise and is isomorphic to Sym(k)×
Sym(n− k);

(2) if H ≤ Sym(Ω) preserves Γ setwise, then H ≤ G.

(E4.26)Consider a category called Intrans
Objects: An object is a pair (Γ,Δ) where Γ is a finite set and Δ is a subset of Γ.
Arrows: An arrow (Γ,Δ) → (Γ�,Δ�) is a function f : Γ → Γ� such that x ∈ Δ =⇒ f(x) ∈ Δ�.

(1) Prove that Intrans is a category.
(2) Prove that if X is an object in Intrans, then Aut(X) ∼= Sym(Δ)× Sym(Γ\Δ).
(3) Prove that if G acts on X = (Γ,Δ) as an object from Intrans, then G is a subset of the setwise

stabilizer of Δ, and conversely.

(E4.27) Let Ω be a subset of order n and let Γ and Δ) be subsets of Ω of order k. Let H (resp. K)
be the setwise stabilizer of Γ (resp. Δ) in Sym(n). For what values of n and k is H maximal? Are H
and K conjugate? How many conjugacy classes of subgroups isomorphic to H does Sym(n) contain?
(E4.28) Describe the intersection of Sym(k) × Sym(n − k) with Alt(n). Is it maximal in Alt(n)?

How many conjugacy classes of such subgroups are there?

3In particular this implies that Aut(G) has a well-defined action on the set of conjugacy classes of G. This is another
way of looking at the situation described in §??.


