5. Primitivity and related notions

(E5.1)For which values of n is the action of D_{2n} on an n-gon, 2-transitive?

(E5.2)Show that, for $k \ge 2$, if an action is k-transitive, then it is k - 1-transitive.

(E5.3)Let $G = S_n$, the symmetric group on *n* letters. What is the largest value of *k* for which *G* is *k*-transitive? What about $G = A_n$, the alternating group on *n* letters?

(E5.4)Prove that if an action is 2-transitive, then it is primitive.

(E5.5) Prove that if an action is transitive and \sim is a *G*-congruence, then all of the blocks associated with \sim have the same cardinality.

(E5.6) Suppose that G acts imprimitively on Ω . Let Δ be a block associated with the action of G on Ω and let $\omega \in \Delta$. Prove that Δ is a union of orbits of the stabilizer G_{ω} .

(E5.7)Complete the proof by showing that if G acts transitively on Ω , and if M is a subgroup of G such that $G_{\omega} < M < G$ for some $\omega \in \Omega$, then the action is imprimitive.

(E5.8)Check that this function is the same as (4) (thereby proving that it defines an action of H on B as an object in Group).

(E5.9)Prove that the group G in Example 16 is equal to

$$\{g \in \operatorname{Sym}(6) \mid i \sim j \Longrightarrow i^g \sim j^g\},\$$

where \sim is the G-congruence defined at (6).

(E5.10)Find a copy of $Sym(2) \wr Sym(3)$ inside Sym(6). Describe its action on [1,6].

(E5.11)Prove the converse to this lemma: If $A \wr G$ acts faithfully on $\Lambda \times \Omega$, then G acts faithfully on Ω and A acts faithfully on Λ .

(E5.12)Our category is called ImprimTrans

Objects: Our objects are pairs (Ω, \sim) where Ω is a finite set and \sim is an equivalence relation for which all equivalence classes have the same size.

Arrows: An arrow $(\Omega, \sim) \to (\Omega', \sim')$ is a function $f : \Omega \to \Omega'$ such that $x \sim y \Longrightarrow f(x) \sim' f(y)$.

- (1) Prove that **ImprimTrans** is a category.
- (2) Prove that if X is an object in **ImprimTrans**, then $\operatorname{Aut}(X) \cong \operatorname{Sym}(\Lambda) \wr \operatorname{Sym}(\Delta)$ for some finite sets Λ and Δ .
- (3) Prove that if G acts on $X = (\Omega, \sim)$ as an object from **ImprimTrans**, then \sim is a G-congruence, and conversely.
- (4) Consider an alternative category called **Imprim** in which we drop the condition that equivalence classes all have the same size. What would Aut(X) look like in this case?

(E5.13)Let H be a primitive subgroup of Sym(n). Prove that

- (1) if H contains a transposition, then H = Sym(n).
- (2) if H contains a 3-cycle, then H contains Alt(n).⁴

(E5.14)Let Ω be a finite set of order n, and let $X = (\Omega, \sim)$ (resp. $Y = (\Omega, \sim')$ be an object from ImprimTrans. Assume that neither \sim nor \sim' are trivial. Let $H = \operatorname{Aut}(X)$ (resp. $K = \operatorname{Aut}(Y)$) be subgroups of Sym(n).

- (1) Use the result of the previous exercise to prove that H is maximal.
- (2) Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does Sym(n) contain?
- (3) Describe the intersection of H and Alt(n).

⁴This is a famous result of Jordan. Its proof is a little tricky.