6. The product action

(E6.1)Consider the product action of the group $Sym(2) \wr Sym(3)$ (on a set of size 8). Is this action primitive?

(E6.2)Prove the converse.

(E6.3)Prove the converse.

(E6.4)Let p be a prime, $\ell > 1$ any positive integer. Let

 $C_p = \langle (1, 2, 3, \dots, p) \rangle$

be a cyclic subgroup of order p in $\operatorname{Sym}(p)$, and consider the wreath product $G = C_p \wr \operatorname{Sym}(\ell)$ in the product action on a set of size p^{ℓ} . Prove that the action is transitive and imprimitive; calculate the order of the blocks of imprimitivity preserved by G; describe the setwise stabilizer of a block of imprimitivity.

(E6.5)Our category is called **ProductStruct**

Objects: An object is a pair (Ω, θ) where Ω is a finite set and $\theta : \Omega \to \Gamma^{\Delta}$ is a product structure. Equivalently an object is a direct product $\underbrace{\Gamma \times \cdots \times \Gamma}_{\ell}$ where Γ is a finite set of size k.

Arrows: An arrow is a pair (g, h) where $g: \Omega \to \Omega$ and $h: \Delta \to \Delta$ are functions, and we require that (7) holds.

- (1) Prove that **ProductStruct** is a category.
- (2) Prove that if X is an object in **ProductStruct**, then $\operatorname{Aut}(X) \cong \operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)$.
- (3) Prove that if G acts on $X = \Gamma^{\ell}$ as an object from **ProductStruct**, then ~ is a G-product structure, and conversely.

(E6.6)Let Ω be a finite set of order n and let $X = (\Omega, \theta)$ (resp. $Y = (\Omega, \theta')$) be an object from **ProductStruct**. Let $H = \operatorname{Aut}(X)$ (resp. $K = \operatorname{Aut}(Y)$) be subgroups of $\operatorname{Sym}(n)$. When is Hmaximal? Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does $\operatorname{Sym}(n)$ contain? Describe the intersection of H and $\operatorname{Alt}(n)$.