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3. Group actions

Throughout this section G is a group and Ω is a set. A (right) action of G on Ω is a function

(1) ϕ : G× Ω → Ω, (g, ω) �→ ωg

such that

(A1) ω1 = ω for all ω ∈ Ω;
(A2) (ωg)h = ωgh for all ω ∈ Ω and g, h ∈ G.
We will refer to the triple (G,Ω, ϕ) as a G-set, since it is an object in the category G-Set. Let us

briefly discuss some examples, the first is particularly fundamental.

Example 10. Let Ω be a set and let G be any subgroup of Sym(Ω), the symmetric
group on Ω. The group G acts naturally on Ω via the action (1) where we write ωg to
mean the image of the element ω under the permutation g.

(E3.1) Verify that the function described in Example 10 is an action, i.e. that (A1) and

(A2) hold.

Example 11. Let V be a vector space and let G be any subgroup of GL(V ), the
general linear group on V . The group G acts naturally on V via

G× V → V, (g, v) �→ v · g
Here we write v · g to mean application (on the right) of the linear transformation g
to the vector v. If V is finite-dimensional, then we can take a basis and write v as a
row vector, g as a square matrix, and v · g becomes just matrix multiplication.

(E3.2) Verify that the function described in Exercise 11 is an action.

(E3.3) Suppose that we changed the function described in Exercise 11 from v · g to g · v (so,

for instance, if V is finite-dimensional we consider v as a column vector and use matrix

multiplication). Show that this is not an action. Can you find a ‘natural’ adjustment to this

definition so that it becomes an action?

The next example is a specific instance of Example 10. To describe it we need a little bit of
notation. Suppose that A is a subset of a group G. Define

�A� := {a1a2 · · · ak | k ∈ Z+, ai ∈ A or a−1
i ∈ A}.

It should be clear that �A� is a group. In fact �A� is the smallest subgroup of G containing A and
we refer to it as the group generated by A.

(E3.4) Give sufficient conditions such that

�A� = {a1a2 · · · ak | k ∈ Z+, ai ∈ A}.
Give an example of a set A in a group G for which this inequality does not hold.

Example 12. Let Ω = {1, . . . , n} with 3 ≤ n ∈ Z+. Consider the group G = �g, h� ≤
Sym(Ω) where

g = (1, 2, . . . , n) and h = (1, n− 1)(2, n− 2) . . .
�
�n
2
�, �n

2
�
�

The group G is known as D2n, the dihedral group of order 2n and in the ensuing
exercise we will establish some standard facts about this group.
Let us make an observation about the action of G on the set Ω that will become

relevant shortly. We can think of the set Ω as the set of vertices of an objectX = (Ω, E)
from the category SimpleGraph, where E is the set

{{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} .
Clearly X can be represented by drawing a regular n-gon and labelling the vertices,
in order anti-clockwise, 1, . . . , n; see Figure 1 for an example when n = 5. Notice that
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Figure 1. D10 acts on the pentagon with g = (1, 2, 3, 4, 5) and h = (2, 5)(3, 4).

the permutation g simply rotates the pentagon anti-clockwise by an angle of 2π
n
, while

the permutation h reflects the polygon through a line passing through the centre and
the vertex marked n. In particular, if {i, j} ∈ E, then

{ig, jg} ∈ E and {ih, jh} ∈ E.
(E3.5) Prove that the order of g (resp. h) is n (resp. 2), and that h−1gh = g−1. Prove that

G is of order 2n and that G contains a normal cyclic subgroup C of order n. Prove that

every element in G\C has order 2.

3.1. Actions and morphisms into the symmetric group. The following lemma is, hopefully,
known to you.

Lemma 3.1. Let ϕ be an action of a group G on a set Ω. For g ∈ G, define the function ϕ∗
g : Ω →

Ω, ω → ωg. Then the function
ϕ∗ : G→ Sym(Ω), g → ϕ∗

g

is a group homomorphism. Conversely, given a group homomorphism θ : G → Sym(Ω), then the
function

θ† : G× Ω → Ω, (g, ω) �→ ωθ(g)

is an action. Moreover (ϕ∗)† = ϕ and (θ†)∗ = θ.

Proof. Assume that ϕ is an action. The axioms for an action imply that ϕ∗
g has inverse equal to

ϕ∗
g−1 hence, in particular, ϕ∗

g is a bijection and so g → ϕ∗
g is a well-defined function with codomain

Sym(Ω). Now
ϕ∗(gh) = ϕ∗

gh = (ω �→ ωgh)

= (ω �→ (ωg)h)

= ϕ∗(g) · ϕ∗(h)

and so g → ϕ∗
g is a group homomorphism as required.

Conversely, given θ, we know that θ(1) = 1 ∈ Sym(G) and so ωθ(1) = ω as required. Similarly

θ†(gh, ω) = ωθ(gh) = ωθ(g)θ(h) = (ωθ(g))θ(h)

and the second implication holds.
The final statement (‘Moreover...’) is left for the reader. �
This lemma amounts to the equivalence of the two statements ‘G acts on Ω’ and ‘there is a

homomorphism G→ Sym(Ω).’ Observe that this is simply a generalization of Example 10 in which
we discussed the natural action of a subgroup G in Sym(Ω) acting on the set Ω. Recall that G can be
thought of as a subgroup of Sym(Ω) whenever there is an injective homomorphism from G to Sym(Ω)
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- the lemma asserts that the example still holds even without ‘injectivity’ and that, effectively, all
actions take this form. 7

In what follows when we are given an action ϕ : G× Ω → Ω we will refer to ϕ∗ : G→ Sym(Ω) as
the associated homomorphism.

3.1.1. Other categories. Our work in §2 suggests a generalization of Lemma 3.1. First we need some
terminology for which we refer to the function ϕ∗ defined in Lemma 3.1.
Let X be an object in a category C of structured sets. We say that ϕ is an action of a group G

on X as an object in C if ϕ is an action on the underlying set Ω such that, for every g ∈ G, the map
ϕ∗
g is an arrow in C.

(E3.6) Check that the action described in Example 12 is a well-defined action of G on X as

an object from SimpleGraph.

Lemma 3.2. Let X be an object in a category C of structured sets. Let ϕ be an action of a group G
on a X as an object in C. Then the function

ϕ∗ : G→ Aut(X), g → ϕ∗
g

is a group homomorphism. Conversely, given a group homomorphism θ : G → Aut(X), then the
function

θ† : G×X → X, (g, ω) �→ ωθ(g)

is an action of G on X as an object in C. Moreover (ϕ∗)† = ϕ and (θ†)∗ = θ.

Proof. Since, by assumption, the map ϕ∗
g is an arrow in C for every g, one immediately obtains that

ϕ∗
g and ϕ

∗
g−1 are an inverse form of isomorphisms. In particular the map ϕ∗ is a well-defined function

into the set Aut(X). The rest of the proof is now (virtually) word for the word the same as the
previous. �

(E3.7) See if you can define analogues of the categories G− Set and G− Set2 for which

Lemma 3.2 amounts to a statement about equivalence of categories.

The most important example relating to Lemma 3.2 is for the situation C = Set, which is the
case covered by Lemma 3.1. Let us mention one other example (another will crop up in the next
subsection).

Example 13. Let C = VectK and let V be an object in C, i.e. V is a vector space
over the field K. A group G acts on V as an object in C if, for all g ∈ G, the map
v �→ vg is a linear transformation of V , i.e. if

(c · v + d · w)g = c · vg + d · wg, for all c, d ∈ K; v, w ∈ V.
Lemma 3.2 asserts that prescribing such an action is equivalent to prescribing a group
homomorphism θ : G → GL(V ), the general linear group of V . There is a whole
field of mathematics dedicated to the study of such morphisms, namely the field of
representation theory.
Note that the action of G on V as an object in VectK is still an action of G on V

thought of as an object in Set.8 Thus prescribing an action of G on V as an object in
VectK by default yields a group homomorphism θ : G→ Sym(V ).
By observing that the action preserves the structure of a vector space, though,

we obtain a lot of information about the location of the image of θ in Sym(V ). In
particular, the group GL(V ) is a proper subgroup of Sym(V ) and so the fact that

7Here is yet another point of view: define a new category G− Set2 whose objects are triples (G,Ω, θ) where
θ : G → Sym(Ω) is a group homomorphism. Now the lemma asserts that G− Set and G− Set2 are equivalent
categories.

8To be rigorous, I should apply the obvious forgetful functor Vect → Set here.
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the action preserves the structure of a vector space is equivalent to knowing that the
image of θ is a subgroup of this proper subgroup.

3.2. Properties of actions. Let (G,Ω, ϕ) be a G-set. Define,

• for ω ∈ Ω, Gω := {g ∈ G | ωg = ω}, is the stabilizer of ω;
• G(Ω) :=

�
ω∈Ω

Gω is the kernel of the action;

• for ω ∈ Ω, ωG := {ωg | g ∈ G} is the orbit of ω.

(E3.8) Show that Gω is a subgroup of G for all ω ∈ Ω. Show that G(Ω) is a normal subgroup

of G, equal to the kernel of the associated homomorphism φ∗.

(E3.9) Suppose that a group G acts on a set Ω. Show that the set of orbits

{ωG | ω ∈ Ω}

partitions Ω.

We say that the action of G on Ω is

• faithful, if G(Ω) = {1}; equivalently, the associated homomorphism ϕ∗ is a monomorphism
and we think of G as a subgroup of Sym(Ω);

• transitive, if ωG = Ω for some (and hence all) ω ∈ Ω.
• semiregular, if Gω = {1} for all ω ∈ Ω;9

• regular, if the action is transitive and semiregular.

(E3.10) let G = Sym(Ω) in Example (E1.1). Prove that the action is faithful. Under what
conditions is it transitive (resp. semiregular)? Describe the stabilizer of an element of Ω.

(It may be easier to restrict to the case where Ω is finite. In which case we can choose a

labelling so that Ω = {1, . . . , n}, for a positive integer n.)

(E3.11) let G = GL(V ) in Example (E1.1). Prove that the action is faithful. Under what

conditions is it transitive (resp. semiregular)? Describe the stabilizer of the zero vector. Let

V be finite-dimensional, choose a basis {e1, . . . , en} and describe the stabilizer of e1.

(E3.12) Consider the action described in Example 12. Prove that the action is both faithful

and transitive (and hence the action induces an embedding of D2n in Aut(X)). What are

the vertex-stabilizers in this action? When does D2n = Aut(X)?

3.2.1. Permutation groups. Let ϕ : G × Ω → Ω be an action, and let θ : G → Sym(Ω) be the
associated homomorphism. It is clear that the kernel, G(Ω), of ϕ, is equal to the kernel of θ as a
group homomorphism. In particular, this means that ϕ is faithful if and only if θ is injective, i.e. θ
is an embedding of G in Sym(Ω).
In the literature, a permutation group is an abstract group G accompanied by some fixed embed-

ding of G in Sym(Ω), for some set Ω. Equivalently, a permutation group is an abstract group G
accompanied by some faithful action.

3.3. Actions from another point of view. We need to know when two actions are ‘the same’.
Hopefully our work in the previous chapter demonstrates that this notion is provided by the concept
of an an isomorphism in the category G-set. Such an isomorphism is known in the literature as a
permutation isomorphism and we now define it explicitly.
A permutation isomorphism between two G-sets (G,Ω, ϕ) and (H,Γ, ψ) is a pair α : G → H, β :

Ω → Γ, where α is a group isomorphism, β is a bijection, and the following diagram commutes:

9In other disciplines, notably algebraic topology and geometric group theory, people tend not to use the term
‘semiregular’, and say instead that ‘G acts freely on Ω.’
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(2)

G× Ω Ω

H × Γ Γ

ϕ

(α,β) β

ψ

In what follows we will use terms like ‘two actions are isomorphic’ to mean that the associated G-sets
are isomorphic.
The next example, and ensuing lemma, shows that any transitive action has a particular form.

Example 14. Let H be any subgroup of G. The group G acts transitively on H\G,
the set of right cosets of H via (Ha, g) �→ Hag (i.e. by right multiplication). When
H is trivial, this is called the right regular action of G.
Similarly G acts transitively on G/H, the set of left cosets of H via (aH, g) �→

g−1aH. When H is trivial, this is called the left regular action of G.

Lemma 3.3. Suppose that a group G acts transitively on a set Ω, and let H be the stabilizer in G
of some point ω of Ω. Then the action of G on Ω is isomorphic to the action of G on H\G.
Proof. Let α : G → G be the identity map. Let γ be an element of Ω. Since G is transitive, there
exists g ∈ G such that ωg = γ. Observe that if f is an element of the coset Hg, then ωf = γ.
Conversely suppose that k ∈ G satisfies ωk = γ. Then

ωkg−1

= (ωk)g
−1

= γg
−1

= ω

and so kg−1 ∈ H, the stabilizer of ω. We conclude that k ∈ Hg and so Hg is precisely the set of all
elements f in G for which ωf = γ.
Now define

β : Ω → H\G, γ �→ Hg

where g is an element that maps ω to γ. The work of the previous paragraph implies that this
definition is well-defined. Now one just needs to verify that (2) holds and we are done. �

(E3.13) Verify that (2) holds, thereby completing the proof of Lemma 3.3.

(E3.14) What conditions on H are equivalent to the action of G on H\G being faithful?

When the group G is finite, we can apply Lemma 3.3 to obtain the following important result,
which is known as the Orbit-Stabilizer Theorem.

Theorem 3.4. Suppose that a finite group G acts on a set Ω. Then, for all ω ∈ Ω,

|G| = |Gω| · |ωG|.
Proof. Write Γ := ωG. Clearly G acts naturally on Γ and, by definition, this action is transitive.
Thus Lemma 3.3 applies and the action of G on Γ is equivalent to the action of G on Gω/G. In
particular,

|Γ| = |G : Gω| =
|G|
|Gω|

and we are done. �

The Orbit-Stabilizer Theorem has many obvious consequences for the action of a finite group
G. For instance, using Lagrange’s theorem, we see that the order of any orbit divides |G|. If, in
particular, the action is semi-regular, then the length of any orbit is equal to |G| (indeed, the converse
is also obviously true).
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(E3.15) Let G be a finite group acting transitively on a set Ω. Show that the average number
of fixed points of the elements of G is 1, i.e.

1

|G|
�

g∈G
|{ω ∈ Ω | ωg = ω}| = 1.

3.4. Groups acting on groups. Consider the categoryGroup, in which objects are groups and ar-
rows are group homomorphisms. By definition, then, an automorphism in this category is a bijection
φ : K → K, where K is a group, and such that for all g, h ∈ K,

φ(g) · φ(h) = g · h.
The set of all such bijections is the group Aut(K).
Now we can consider the situation where a group H acts on K as an object from Group; this is

equivalent (by Lemma 3.2) to the existence of a group homomorphism φ : H → Aut(K).

3.4.1. Groups acting ‘on themselves’. Any group G acts on itself naturally by conjugation. Formally,
this action is

G×G→ G, (g, h) �→ g−1hg.

Thus, by Lemma 3.2, this is equivalent to the existence of a homomorphism

φ : G→ Aut(G), g �→ φg

where φg : G→ G, h �→ g−1hg.

(E3.16) Prove that the map φ is a well-defined group homormophism from G to Aut(G)

(and, hence, the action of G on itself by conjugation is an action on itself as an object from

Group.)

An orbit in the conjugacy action is a conjugacy class of G, and the stabilizer Gh of an element h is
CG(h), the centralizer of h. Note that {1} is always a conjugacy class of G, which we call the trivial
conjugacy class. Note, that by (E3.9), the conjugacy classes partition the group G. If two elements
g, h ∈ G lie in the same conjugacy class, then we say that g and h are conjugate; conjugate elements
have identical group-theoretic properties.

(E3.17) Prove that if g and h are conjugate elements of G, then they have the same order.

(E3.18) Prove that a normal subgroup of G is a union of conjugacy classes of G.

(E3.19) Let N be a normal subgroup of G. Prove that G acts (by conjugation) on N as an

object grom Group. (In particular, whenever N is a normal subgroup of G, the conjugation

action induces a morphism G → Aut(N).

We define Inn(G) := Im(φ) and call Inn(G) the inner automorphism group of G. The quotient
Out(G) := Aut(G)/Inn(G) is called the outer automorphism group of G.10 To see that Out(G) is,
indeed, a group, we require the following result.

Lemma 3.5.

(1) Inn(G)� Aut(G);
(2) ker(φ) = Z(G).

Proof. (E3.20) Prove this.

�
10Note that elements of Out(G) are not automorphisms of G – they are cosets of Inn(G).
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There is another ‘natural’ action of a group G that is connnected to its action by conjugacy on
itself. In this action we let Ω be the set of all subgroups of G. Then G acts on Ω by conjugation via

G× Ω → Ω (g,H) �→ g−1Hg.

An orbit in this action is a conjugacy class of subgroups of G, and the stabilizer GH of an element
H ∈ Ω is NG(H), the normalizer of H. If two subgroups H,K ≤ G lie in the same conjugacy class
of subgroups, then we say that H and K are conjugate.

(E3.21) Consider the action of G by conjugation on the set of all subgroups of G. If H is

a subgroup of G and {H} is an orbit under this action, then what type of subgroup is H?

(E3.22) Prove that if G acts transitively on Ω and Gω is a stabilizer, then the set of all

stabilizers equals the set of all conjugates of Gω.
11 Under what conditions is the action of G

by conjugation on this set of conjugates permutation isomorphic to the action of G on Ω?

3.5. More on permutation isomorphisms.

Lemma 3.6. If G and H are both permutation groups on Ω, then G and H are permutation isomor-
phic if and only if G and H are conjugate in Sym(Ω).

Proof. Suppose that G and H are permutation isomorphic. Then there exists a bijection β : Ω → Ω
and an isomorphism α : G → H with (ωg)β = (ωβ)(gα) for all ω ∈ Ω and g ∈ G. Applying β−1 to
both sides, we obtain that

ωg = ((ωβ)(gα))β−1

and so g = β(gα)β−1 for all g ∈ G. Thus G = β(Gα)β−1 = βHβ−1 and we are done, since
β ∈ Sym(Ω).
Conversely, suppose that G = βHβ−1 for some β ∈ Sym(Ω). Define an isomorphism

ψ : G→ H, g �→ β−1gβ.

Then for all g ∈ G and ω ∈ Ω,
ωg = ωβ(β−1gβ)β−1

= ω(β(gψ)β−1

and so (ωg)β = (ωβ)gα as required. �
The following result is easy, but turns out to be crucial when we come to studying the subgroups

of Sym(Ω).

Lemma 3.7. Let G be a permutation group on Ω.

(1) If CSym(Ω)(G) is transitive on Ω, then G is semiregular.
(2) If G is transitive on Ω, then CSym(Ω)(G) is semiregular.

Proof. (1) Let α, β ∈ Ω and g ∈ Gα. Since CSym(Ω)(G) is transitive on Ω, there exists h ∈ CSym(Ω)(G)
such that β = αh. Then

βg = αhg = α(gh) = (αg)h = αh = β

Since β was arbitrary we conclude that g fixes every point of Ω. Thus g = 1 and so Gα = {1} as
required.
(2) ClearlyG ≤ CSym(Ω)(CSym(Ω)(G)) and, sinceG is transitive, we conclude that CSym(Ω)(CSym(Ω)(G))

is transitive also. Thus CSym(Ω)(G) is semiregular by (1). �
(E3.23) If G is a regular permutation group on Ω then CSym(Ω)(G) is regular.

(E3.24) If G is a regular permutation group on Ω, then G is permutation isomorphic to

CSym(Ω)(G).

11In particular if g, h ∈ G are conjugate, then so are their centralizers.


