FINITE PERMUTATION GROUPS AND FINITE CLASSICAL GROUPS

NICK GILL

1. INTRODUCTION

Throughout this section G is a group. The group G is called simple if it is nontrivial and the only
normal subgroups of G are {1} and G.

(E1.1) Prove that if G is a finite simple abelian group, then G = C,,, the cyclic subgroup of
order p, where p is a prime.

This course is motivated by a desire to understand the finite simple groups. As we shall see, when
we come to study series, an understanding of the finite simple groups takes us a long way towards
understanding all finite groups.

One of the great mathematical achievements of the last century has been the complete classification
of the finite simple groups. This classification, the proof of which stretches across thousands of journal
articles in work by dozens of authors, can be stated simply.

Theorem 1.1. (Classification of Finite Simple Groups) A finite simple group is isomorphic to one
of the following

(1) A cyclic group C,, of order p where p is a prime;

(2) An alternating group Alt(n), where n > 5;

(3) A finite group of Lie type;
(4) One of 26 sporadic groups.

This course is, roughly speaking, split into two halves. In the first half we will study the second
type of simple group listed in CFSG, namely the alternating groups Alt(n). You have already met
these groups in an undergraduate course, but there are still many natural questions that one can ask
about them: What are their conjugacy classes? What are their automorphism groups? What are
their subgroups? We will give at least partial answers to all of these questions.

Our method in studying the alternating groups will be to exploit their natural structure as per-
mutation groups acting on sets with n elements. Thus we will spend quite a bit of time studying
permutation groups, which are objects of interest in their own right. !

This start will set us up well for the second half of the course when we come to study the finite
classical groups. These are a subclass of the groups of Lie type, the others being known as the
exceptional groups of Lie type. Our analysis of the classical groups follows the original approach of
Jordan and, later, Dickson. In other words, we construct the classical groups as quotients of certain
subgroups of GL(V'), the set of invertible linear transformations over a finite vector space V. These
subgroups have a natural action on the associated vector space V', and we can study this action using
permutation group theory in order to deduce properties of the relevant simple groups.

A brief note about what is missing: the two classes of finite simple group that we fail to discuss
are the exceptional groups of Lie type, and the 26 sporadic groups. The latter, at least, are a finite
set so we might argue that their omission is not so serious. On the other hand the sporadic groups
are among the most famous and beautiful objects in finite group theory, so their absence is regretted.
Unfortunately, it is their very sporadic-ness that makes them so hard to include — they do not submit

Hndeed it is worth noting that group theory first arose, via the work of Galois and his successors, as the study of
permutations of sets. In other words, in the beginning, permutation groups were the only objects studied from the
subject we now think of as group theory.
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easily to a uniform treatment and each sporadic group requires individual attention to be understood
properly. The keen student is encouraged to consult [Asc94].

The exceptional groups of Lie type are a different kettle of fish. They form an infinite class of
groups and, although they were discovered in a somewhat sporadic way through the first half of the
twentieth century, they now form part of a uniform theory of groups of Lie type that has its origins
with Chevalley, and later Steinberg, Ree and Tits. This uniform theory has the advantage that it
allows one to study all finite groups of Lie type (including the classical groups) in one fell swoop, but
it has the disadvantage (at least to my mind) of being somewhat more difficult than the approach
we shall take that pertains only to the classical groups.

In any case if one wishes to understand the classical groups properly, one should really understand
both approaches as each yields different insight.? In this course we will not discuss the approach of
Chevalley, but we refer the interested reader to the beautiful book of Carter [Car89).

1.1. Prerequisites. I assume that you have done a basic course in group theory and are familiar
with the statements of the isomorphism theorems, Lagrange’s theorem, Sylow’s theorems and the
concept of a group action. I also assume that you have seen a definition of the sign of a permutation,
and have met the symmetric group, Sym({2), and the alternating group, Alt(£2), for a set 2.

1.2. Acknowledgments and sources. Writing this course has given me an excuse to read a great
deal of beautiful mathematical writing, for which I am very grateful.

I want to record in particular the extensive use I have made of unpublished lecture notes of Jan Saxl
(Cambridge), Tim Penttila (UWA, now Colorado) and Michael Giudici (UWA), as well as published
work (or work available online) of Peter Cameron [Cama, Camb], Dixon and Mortimer [DM96],
Joanna Fawcett [Faw| and Harold Simmons [Sim].

The just-cited texts are all well worth reading. The keen student may also be interested in the
following:

(1) La géométrie des groupes classiques by Jean Dieudonné[Die63]. This is a classic, written in
French.

(2) The subgroup structure of the finite classical groups by Kleidman and Liebeck[KL90]. This
proves a refined version of Aschbacher’s theorem on the subgroup structure of the finite
classical groups. It also contains a wealth of other information on these groups (and other
almost simple groups).

(3) The geometry of the classical groups by Donald Taylor [Tay92]. This covers all the material
in the second half of this course plus a fair bit more.

(4) Finite permutation groups by Wielandt. Another classic which gives a good sense of the major
themes in the development of the theory of finite permutation groups.

2This is most clearly exhibited when one studies the subgroup structure of the classical groups. Subgroups that are
not almost simple are exhibited very clearly by the theorem of Aschbacher [Asc84] which uses the classical theory of
Jordan, whereas almost simple groups are often most clearly seen using the approach of Chevalley et al.
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2. A LITTLE CATEGORY THEORY

A category C consists of

e a class Obj of entities called objects.

e a class Arw of entities called arrows.

e two assignments source : Arw — Obj and target : Arw — Obj. These assignments are
represented in the obvious way:

AL B

indicates that f is an arrow with source A and target B.
e an assignment 1 : Obj — Arw which, given an object A in C, yields an arrow 14 satisfying

A28 4

(In other words the source and target assignments of the distinguished arrow 14 are A itself.)
e a partial composition Arw X Arw — Arw which has the following range of definition: Two
arrows

ALBl and BQLC

are composable, in that order, precisely when B; and B, are the same object. The resulting
arrow has form

yRELNYG)

In addition the category C must satisfy the following conditions:

(C1) Suppose we are given a diagram as follows:
A% oD

We require that (fg)h = f(gh). (In other words, composition is associative.)
(C2) Consider an arbitrary arrow f and the two compatible identity arrows, as follows:

Al a4ty plep

We require that flg = f =14f.
Some notes:

e We use words like ‘class’ and ‘assignment’ to allow for the possibility that Obj and Arw are
not sets. If they were sets (in which case C is called a small category), then ‘assignment’
would be the same as ‘function’.

e When we write ‘ fg’ for the composition of arrows f and g, we are simply fixing some notation
— do not confuse this with composition of functions (although for many categories, arrows
are indeed functions of a kind). You should also note our ordering which is somewhat uncon-
ventional, but which is chosen to be consistent with our later convention of studying groups
acting on the right.

e A final piece of notation: given two objects A and B in C, we write Homg[A, B] for the class
of all arrows with source A and target B, and we call this the hom-class from A to B.

2.1. Examples of categories. We briefly discuss some examples of categories. The first type we
shall study — categories of structured sets — are far and away the easiest. In fact we will not use any
other type of category in our ensuing work, but it will be worth at least mentioning some other types
for the sake of our mathematical education.
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2.1.1. Structured sets. In these categories, each object is a ‘structured set’, i.e. a set equipped with
some extra gadgetry, and arrows are functions between the carrying sets which respect this gadgetry.
Rather than making such a notion precise®, let us list some examples:

Example 1.
Category  Objects Arrows
Set sets functions
Pfn sets partial functions
Grp groups morphisms
AGrp abelian groups morphisms
Rng rings morphisms
Field fields morphisms
Pos posets monotone maps
Top topological spaces continuous maps
Vect vector spaces over a field K linear transformation

Mod — R right R-modules over a ring R morphisms
R —Mod left R-modules over a ring R  morphisms
(E2.1) Prove that Set, Pfn, Grp, Top and Vecty are categories.

D is a subcategory of a category C if the class of objects (resp. arrows) of D is a subset of the class
of objects (resp. arrows) of C and, moreover, D is a category. D is a full subcategory of a category
C if it is a subcategory and, moreover, if for all objects X, Y of D, Homp|X, Y| = Hom¢[X, Y].

(E2.2) Which categories in Example 1 are (full) subcategories of some other category in
Ezample 17

Another example of a structured-set category that is well-studied within permutation group theory
is the following:
Example 2. Our category is called SimpleGraph.
Objects: An object is a pair (V, E') where V' is a set (the ‘vertices’) and F is a set
of subsets of V, each element of E having cardinality at most 2 (the ‘edges’).
Arrows: Consider an arrow

(v.B) L (v, B).
Then f is just a function V' — V'’ such that
{e1,e2} € E = {f(e1), f(e2)} € .

In combinatorics, f would be called a a graph morphism.

An easy variant of SimpleGraph is the category SimpleDigraph whose objects
are ‘directed graphs’. In this category objects are pairs (V, E') where V' is a set and F
is a multiset of ordered pairs of elements of V. One defines arrows in the obvious way.
(E2.3) Complete the definition of SimpleDigraph and prove that it is a category.
(E2.4) Give the ‘right’ definition of the category Graph corresponding to graphs that are
not necessarily simple, i.e. which may have multiple edges between vertices.

The final such structured-set category we consider will turn out to be important in the second half
of the course when we study the classical groups.

Example 3. Let us begin with the category Vecty defined above. We will study a
couple of variants of Vectg:

Variant 1: More arrows

A semilinear transformation from V to W is a map T : V — W such that

3The precise notion is that of a concrete category. This is a category equipped with a faithful functor to the category
Set.
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(1) (v1 +vo)T =0T + v T for all vy,ve € V;
(2) there exists an automorphism « of &k such that

(c)T = c*(vT)

forallce kv e V.4

Our new category is called VectSk. The objects are vector spaces over K; arrows
are semilinear transformations. Clearly Vecty is a subcategory of VectSk.

Variant 2: Dot product

Let us specify K = R (an analogous discussion holds for K = C). If V is a finite-
dimensional vector space over R, then V' can be equipped with a Euclidean inner
product as follows: choose a basis {by,...,b,} for V and define the inner product of
two vectors z,y € V to be

-y = Z il
i=1

where = Y 2;b; and y = > y;b;.°

We will define three new categories. All have the same set of objects: these are
pairs (V,-) where V' is a finite dimensional vector space over R and - is a Euclidean
inner product on V' (in other words, objects are Euclidean spaces).

IVectg : an arrow (V1,-) SN (Va,-) is a linear transformation f : V; — V4 such that, for
all v,w e Vy,
vf -wf=v-w.
Note that the dots on each side of this equation represent different inner products.

SVectyg : an arrow (V4,) SN (Va,-) is a linear transformation f : V; — V5 for which
there exists a ¢ € R such that for all v,w € Vi,

vf ~wf = c(v-w).

SSVecty : an arrow (V, ) SN (V4,+) is a semilinear transformation f : V; — V5 for which
there exists a ¢ € R such that for all v,w € Vi,

vf ~wf =c(v-w).

The reason for the names of these categories will become clear when we come to the
study of isomorphisms.

(E2.5) Prove that VectSg and IVectr are categories.

Our final example is not exactly a category of structured sets, but it has very much the same
flavour. It will be crucial in what follows.

Example 4. Our category is called G — Set.

Objects: An object is a triple (G, 2, ¢) where G is a group, 2 is a set and ¢ is an
action of G on ¢, i.e. ¢ is a map G x Q — () satisfying the usual axioms.

Arrows: An arrow (G,Q,¢) — (H,T',4) is a pair («, ) where o : G — H is a
group morphism and g : 2 — I' is a total function. We require moreover that the
following diagram commutes:

We will formally define the notion of ‘automorphism’ for a category C shortly; in particular a field automorphism
is an automorphism for the category Field. For now it may help to consider the example K = C and consider the
complex-conjugation map z — z. This is a field automorphism of C.

PA better definition of a Euclidean inner product is that it is a non-trivial bilinear map V x V — R. (This is ‘better’
because it does not involve a choice of basis.)
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GXQLQ

w|

HXFLF

(E2.6) Prove that G-Set is a category.

2.1.2. More exotic categories. The categories that we have met so far are all of a sort. Category
theory was developed not to deal with these, but to deal with categories that crop in far more exotic
ways. So one might consider, say, function categories, or categories of presheaves of a given category,
or categories of chain complexes, etc.

Rather than discuss the aforementioned exotic categories which are important for many reasons, I
will discuss an unimportant example that has the advantage of being easy to define and gives a tiny
flavour of what is possible.

Example 5. The objects are finite sets. An arrow
A-L B

is a function
f:Ax B —R.
For each pair of arrows,
ALy B %0
we define
fg: AxC =R, (a,c) — Zf(mb)g(b,c).
beB

(E2.7) Prove that Example 5 yields a category.

2.2. Isomorphisms and automorphisms. A pair of arrows

ALy Band B9 A

such that
fg=1lpand gf =13

form an nverse pair of isomorphisms. Each arrow is an isomorphism.
An arrow
A-15 4
(i.e. an arrow with source and target equal) is called an endormorphism. An arrow that is both an
endomorphism and an isomorphism is called an automorphism.

Given an object X, the set of all automorphisms of X is a group under composition. We call this
group the automorphism group of X and denote it Aut(X).

Consider the specific situation when X is an object in C'; a category of structured sets. Thus X
can be thought of as a set (which we call Q for now, to distinguish it from X), plus some extra
gadgetry, the ‘furnishings’ of the object. An automorphism of X will necessarily be a permutation
of the underlying set 2. This means, in particular, that Aut(X) is group-isomorphic to a subgroup
of Sym(X), the symmetric group on X.

Example 6. In many cases Aut(X) is an object we have encountered before. For
example
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Category Aut(X)

Set Sym(X), the symmetric group on X
Grp Aut(X)
Top 777

Vecty  GL(X), the general linear group of X
(E2.8) What is Aut(X) when X is an object in Top?

In a category an arrow A Ly Bis called

g
e monic if, for each pair of arrows X A, we have
h

gf =hf = g=h;

g
e cpic if, for each pair of arrows B X, we have
h

fg=fh= g=h.

(E2.9) Show that
(1) an isomorphism is monic and epic;
(2) if C is a structured set (so that each arrow is carried by a total function between the
carriers of the two objects), then
mjective => monic, and surjective = epic;

(3) epic does not imply surjective in Ring;

(4) bijective does not imply isomorphism in Top.
Example 7. An isomorphism in G-Set is a permutation isomorphism. We will
discuss these in greater detail in due course.
Example 8. If X = (V, E) is an object in SimpleGraph, then Aut(X), the group
of automorphisms of the graph X, is the set of all bijective functions f : V — V that
are arrows in SimpleGraph and whose inverse is an arrow in SimpleGraph.

(E2.10) What are automorphisms in Graph? Can you see why one needs a different defi-

nition in this context?

Example 9. Consider the variants on Vectyx which we defined earlier. For the first

objects V' are vector spaces, for the remaining three, objects R™ are Euclidean spaces

(real vector spaces equipped with a Euclidean inner product).

(1) VectSg: Aut(V) is the set of all invertible semilinear transformations of V', often
denoted I'L(V).

(2) IVectg: an arrow is an invertible linear transformation f : V' — V such that
vf -wf =v-w for all v,w € V. In other words f is an isometry of R", and
Aut(R") is the orthogonal group of R", denoted O(R,n) or, simply O(n) in the
literature.

(3) SVectg: an arrow is an invertible linear transformation f : V' — V for which
there exists ¢ € R such that vf - wf = ¢(v - w) for all v,w € V. In other words f
is a similarity of R", and Aut(R") is the similarity group of R™.

(4) SSVectg: an arrow is an invertible semilinear transformation f : V. — V for
which there exists ¢ € R such that vf - wf = ¢(v - w) for all v,w € V. In other
words f is a semisimilarity of R", and Aut(R") is the semisimilarity group of
R".6

6This category is, in fact, the same as the previous, since R admits no automorphisms! Of course this construction
will also work for C or, indeed, any field you care to mention... And in these cases this category is interesting (as we
shall see).



