

FIGURE 2. A representation of the permutation (1, 2, 3, 4)(5)(6, 7)

## 4. The alternating groups

Throughout this section  $\Omega$  is a finite set of order n. In what follows we will often assume, without comment, that the set  $\Omega$  is equal to the set  $\{1, \ldots, n\}$ , and we will write  $\operatorname{Sym}(\Omega)$  or  $\operatorname{Sym}(n)$  for the symmetric group on  $\Omega$ , the set of all permutations of the set  $\Omega$ .

Our aim in this section is to take a first look at  $Alt(\Omega)$ , the alternating group on  $\Omega$ , noting down some basic properties. Let us begin by reminding ourselves of its definition:

4.1. **Definition.** Recall that a *transposition* is an element of  $\text{Sym}(\Omega)$  that fixes all but two elements of  $\Omega$ , and these two it swaps. In cycle notation, then, a transposition g is written  $(\alpha, \beta)$  where  $\alpha$  and  $\beta$  are the two elements of  $\Omega$  that are swapped by g.

Our first exercise is easy and fundamental.

(E4.1) Every element of  $Sym(\Omega)$  can be written as a finite product of transpositions.<sup>12</sup>

Now define the function

 $\operatorname{sgn}: \operatorname{Sym}(n) \to C_2,$ 

(3)

 $g \mapsto \begin{cases} 1, & \text{if } g \text{ is a product of an even number of transpositions;} \\ -1, & \text{if } g \text{ is a product of an odd number of transpositions.} \end{cases}$ 

Note that we write  $C_2$  for the cyclic group of order 2.

Lemma 4.1. The function sgn is a group homomorphism.

*Proof.* The key thing to check here is that sgn is a well-defined function - once this is established, the fact that it is a group homomorphism is immediate.

To check well-definedness we must show that no permutation g can be written as a product of transpositions in two different ways, one with an even number of transpositions, the other with an odd number. Suppose, for a contradiction, that such a g does exist. Clearly the same property holds for  $g^{-1}$  and we conclude that the same property holds for  $1 = gg^{-1}$ .

We must show, then, that the identity permutation cannot be written as a product of an odd number of transpositions. To see this, let us represent a permutation  $g \in \text{Sym}(\Omega)$  as two rows, both labelled  $1, \ldots, n$  with lines taking the upper row to the lower row according to the action of g. Rather than explain this rigorously, we refer to Figure 2 which should make clear what is going on. Observe that if we represent a transposition (i, j) in this way, then the number of 'crossings' in the diagram is an odd number - the lines originating at i and j cross each other once, plus they each cross every line originating at a number k such that i < k < j. Since these are all the crossings for a transposition, their number is odd.

We can multiply two permutations using this notation, by writing one on top of the other and connecting the relevant lines. If we consider a product of an odd number of transpositions, then the representation we obtain will have an odd number of crossings - an odd number at each level, and an odd number of levels.

On the other hand observe that if the product of k permutations is equal to the identity, then the representation of this product will have an even number of crossings, since any two lines that cross must cross 'back again'. We are done.

<sup>&</sup>lt;sup>12</sup>Put another way - and using terminology introduced in the previous chapter - this exercise asserts, precisely, that  $Sym(\Omega)$  is *generated* by the set of all transpositions.

NICK GILL

The function sgn is clearly surjective, hence its kernel is a normal subgroup of  $\text{Sym}(\Omega)$  of index 2. We define  $\text{Alt}(\Omega)$  to be equal to the kernel of sgn, i.e.  $\text{Alt}(\Omega)$  is the set of all permutations that can be written as a product of an even number of transpositions.

In what follows we will sometimes write Alt(n) as a synonym for  $Alt(\Omega)$ .

(E4.2) If  $\Omega$  is an infinite set, then one defines the finitary symmetric group to be the set of all permutations that fix all but a finite number of elements of  $\Omega$ .

- (1) Prove that  $\operatorname{FinSym}(\Omega)$  is a group.
- (2) Prove that  $\operatorname{FinSym}(\Omega)$  is generated by the set of all transpositions.
- (3) Prove that the function sgn given at (3) is a group homomorphism from  $\operatorname{FinSym}(\Omega)$  to  $C_2$ .
- (4) (Harder) Prove that the kernel of sgn (known as the finitary alternating group) is an infinite simple group.

4.2. Conjugacy classes. For a fixed positive integer n, we define a *partition of* n to be a non-decreasing list of positive integers,  $\lambda$ , that sum to n; i.e.

$$\lambda = [\underbrace{1, \dots, 1}_{n_1}, \underbrace{2, \dots, 2}_{n_2}, \underbrace{3, \dots, 3}_{n_3}, \dots]$$

where  $n = \sum_{i} i n_i$ . We write the partition  $\lambda$  as  $1^{n_1} 2^{n_2} 3^{n_3} \cdots$ .

Recall that if  $g \in \text{Sym}(\Omega)$ , then g can be written as the product of a disjoint set of cycles from  $\text{Sym}(\Omega)$ . If we order the multiset of lengths of these cycles appropriately, then we obtain a partition of n, and this partition is called the *cycle type* of g. We have the following result from basic group theory.

(E4.3) Let g, h be two elements of  $Sym(\Omega)$ . Then g and h are conjugate in  $Sym(\Omega)$  if and only if they have the same cycle type.

Exercise (E3.18) implies that  $Alt(\Omega)$  is a union of conjugacy classes of  $Sym(\Omega)$ .

**(E4.4)**Let C be a conjugacy class of Sym( $\Omega$ ) corresponding to partition  $1^{n_1}2^{n_2}3^{n_3}\cdots$ . Then  $C \subset Alt(\Omega)$  if and only if

 $n_2 + n_4 + n_6 + \cdots$ 

is even.

We are interested in describing the conjugacy classes of  $Alt(\Omega)$ . An immediate corollary of (E4.3) is the following.

**Corollary 4.2.** Let g, h be two elements of  $Alt(\Omega)$ . If g and h are conjugate in  $Alt(\Omega)$ , then g and h have the same cycle type.

We would like to prove a converse. The following lemma does the job.

**Lemma 4.3.** Let C be a conjugacy class of  $Sym(\Omega)$  that is a subset of  $Alt(\Omega)$ . Either C is a conjugacy class of  $Alt(\Omega)$  or C is the union of two conjugacy classes of  $Alt(\Omega)$  of equal size. The latter happens if and only if, for  $g \in C$ ,  $C_{Sym(\Omega)}(g) \leq Alt(\Omega)$ .

*Proof.* Let  $g \in C$  and let  $K := C_{\text{Sym}(\Omega)}(g)$ . The orbit-stabilizer theorem implies that

$$|C| = \frac{|\operatorname{Sym}(\Omega)|}{|K|}$$

Clearly  $C_{\operatorname{Alt}(\Omega)}(g) = K \cap \operatorname{Alt}(\Omega)$ .

Case 1: Suppose that  $K \leq \operatorname{Alt}(\Omega)$ . Then (by the orbit-stabilizer theorem) the conjugacy class of g in  $\operatorname{Alt}(\Omega)$  has size

$$\frac{|\operatorname{Alt}(\Omega)|}{|K|} = \frac{1}{2}|C|.$$

Note that if the supposition is true for some  $g \in C$ , then it is true for all  $g \in C$ . Thus the result follows.

Case 2: Suppose that  $K \not\leq \operatorname{Alt}(\Omega)$ . Then  $C_{\operatorname{Alt}(\Omega)}$  is an index 2 subgroup of K and, by the orbit-stabilizer theorem, the conjugacy class of g in  $\operatorname{Alt}(\Omega)$  has size

$$\frac{|\mathrm{Alt}(\Omega)|}{\frac{1}{2}|K|} = |C|$$

In other words C is a conjugacy class of  $Alt(\Omega)$ , and the result follows.

(E4.5) Let C be a conjugacy class of Sym(n) of type 1<sup>a1</sup>2<sup>a2</sup>3<sup>a3</sup> ··· . Suppose that g ∈ C ⊂ Alt(n). The following are equivalent:
(1) C is the union of two conjugacy classes of Alt(n);
(2) a<sub>i</sub> ≤ 1 for all i, with a<sub>i</sub> = 0 for all even i.

The following exercise will be used shortly.

(E4.6) Prove that, if  $n \ge 5$  and C is a non-trivial conjugacy class of Alt(n), then |C| > n.

4.2.1. An extension. It should be clear that Lemma 4.3 is a special case of a more general result dealing with the following setting: G is a finite group, N is a normal subgroup, and C is a conjugacy class of G that is a subset of N.

(E4.7) The set C is the union of a number of conjugacy classes,  $C_1, \ldots, C_k$ , of N; the classes  $C_1, \ldots, C_k$  are of equal size; finally

$$k = \frac{|G:N|}{|C_G(g):C_N(g)|},$$

where  $g \in C$ .

In this situation we say that 'the G-conjugacy class C splits into k N-conjugacy classes.'

## 4.3. Simplicity.

## Lemma 4.4. Alt(5) is simple.

*Proof.* The group Alt(5) contains a single element of type  $1^5$ , 15 of type  $1^{1}2^{2}$  (all conjugate), 20 of type  $1^{1}2^{2}$  (split into two conjugacy classes) and 24 of type  $5^{1}$  (all conjugate).

A normal subgroup of Alt(5) must be a union of some of these five conjugacy classes, and one of them must be the conjugacy class of size 1 containing the identity. Furthermore such a union must have order dividing 60. A quick check implies that Alt(5) contains only  $\{1\}$  and itself as normal subgroups.

(E4.8) Write down the subgroup lattice of Alt(4). Identity which subgroups are normal and thereby demonstrate that Alt(4) is not simple. Prove that Alt(2) and Alt(3) are simple and abelian.

Before proving our main result, we need the following.<sup>13</sup>

**(E4.9)** Prove that the group Alt(n) is generated by the set of all 3-cycles (a 3-cycle is an element of cycle type  $1^{n-3}3^1$ ). Show, in fact, that the following set of 3-cycles is sufficient to generate Alt(n):

 $\{(1,2,i) \mid i=3,\ldots,n\}.$ 

**Theorem 4.5.** Alt(n) is simple for  $n \ge 5$ .

*Proof.* We proceed by induction on n. We have proved the base case, when n = 5. Suppose that the result is true for Alt(n) and let K be a normal subgroup of G = Alt(n+1). Then G has a subgroup H of index n+1 that is the stabilizer of a point in the natural action of G on  $\{1, \ldots, n\}$ . Clearly  $H \cong Alt(n)$ . By induction H is simple, thus  $K \cap H$  is either trivial, or equal to H.

Case 1:  $K \cap H$  is trivial. In this case  $|K| \leq n+1$  and, in particular, Alt(n+1) contains a non-trivial conjugacy class of order at most n+1. This contradicts (E4.6).<sup>14</sup>

Case 2:  $K \cap H = H$ . Then K contains H and, since K is normal, K contains all conjugates of H. Since all 3-cycles fix a point in the natural action on  $\{1, \ldots, n\}$ , K contains all 3-cycles. Now (E4.9) implies that K = G as required.

17

<sup>&</sup>lt;sup>13</sup>We ask for a proof of a stronger statement ("Show, in fact...") as this will come in handy for a later result.

<sup>&</sup>lt;sup>14</sup>A reminder: if you are hazy as to why  $|K \cap H| \le n+1$  in this case, then recall the following basic result: If G, H, K are all groups with  $H, K \le G$ , then, writing  $KH = \{kh \mid k \in K, h \in H\}$ , we have  $|KH| = \frac{|K| \cdot |H|}{|K \cap H|}$ .

4.4. Semidirect products. The group Alt(n) is a normal subgroup of Sym(n). To understand the relationship between these two groups, we need to discuss semidirect products. These will be useful in many places throughout the course, for instance they are needed for the definition of a wreath product a little later.

Let H and K be groups. Now suppose that H acts on K as an object from **Group**; equivalently (by Lemma 3.2), let  $\phi : H \to \operatorname{Aut}(K)$  be a group homomorphism.

Consider the set whose elements are ordered pairs with the first entry from H and the second from  $K^{15}$ . Define a multiplication operation on this set as follows:

$$(h_1, k_1)(h_2, k_2) = (h_1 \cdot h_2, k_1^{\phi(h_2)} \cdot k_2).$$

Lemma 4.6. The set and multiplication operation just defined form a group.

This group is denoted  $K \rtimes_{\phi} H$ .

*Proof.* The multiplication defined above is clearly a well-defined binary operation. Let us check the group axioms in turn:

Associativity: Let  $h_1, h_2, h_3 \in H$  and  $k_1, k_2, k_3 \in K$ . Now observe that

$$(h_1, h)2) ((h_2, k_2)(h_3, k_3)) = (h_1, k_1)(h_2h_3, k_2^{\phi(h_3)}k_3)$$
  
=  $(h_1h_2h_3, k_1^{\phi(h_2h_3)}k_2^{\phi(h_3)}k_3)$ , while  
 $((h_1, k_1)(h_2, k_2)) (h_3, k_3) = (h_1h_2, k_1^{\phi(h_2)} \cdot k_2)(h_3, k_3)$   
=  $(h_1h_2h_3, (k_1^{\phi(h_2)}k_2)^{\phi(h_3)}k_3)$ 

and associativity follows.

**Identity**: The identity element is (1, 1) and observe that for  $h \in H, k \in K$ 

$$(1,1)(h,k) = (h, 1^{\phi(h)}k) = (h,k)$$
$$(h,k)(1,1) = (h,k^{\phi(1)}1) = (h,k).$$

**Inverse**: One can easily check that, for  $h \in H, k \in K$ ,  $(h^{-1}, (k^{-1})^{\phi(h^{-1})})$  is the inverse of (h, k) for the multiplication defined above. We are done.

(E4.10) Suppose that the action of H on K is the trivial action. What is  $K \rtimes_{\phi} H$ ?

The next lemma lists some basic properties of this construction.

**Lemma 4.7.** Let  $G = K \rtimes_{\phi} H$ .

- (1) The subset  $K_0 := \{(1,k) \mid k \in K\}$  is a normal subgroup of  $K \rtimes_{\phi} H$  that is isomorphic to K;
- (2) The subset  $H_0 := \{(h, 1) \mid h \in H\}$  is a subgroup of  $K \rtimes_{\phi} H$  that is isomorphic to K;
- (3)  $G/K_0 \cong H$ ;
- (4) The natural conjugation action of  $H_0$  on  $K_0$  is isomorphic to the action of H on K given by  $\phi$ .

*Proof.* Define a function

$$\varphi: K \rtimes_{\phi} H \to H$$
$$(h, k) \mapsto h.$$

Now, for any  $(h_1, k_1), (h_2, k_2) \in G$  observe that

$$\varphi\left((h_1,k_1)(h_2,k_2)\right) = \varphi(h_1h_2,k_1^{\phi(h_2)}k_2) = h_1h_2 = \varphi(h_1,k_1)\varphi(h_2,k_2).$$

Thus  $\varphi$  is a group homomorphism. It is clear that  $K_0 = \ker(\varphi)$  thus  $K_0$  is a normal subgroup of G and (1) follows. Now define a function

$$\theta: K_0 \to K$$
$$(1,k) \mapsto k.$$

<sup>&</sup>lt;sup>15</sup>In other words consider the set (not the group)  $H \times K$ .

It is clear that  $\theta$  is an isomorphism and (1) is proved. Now the subset  $H_0$  is obviously a subgroup and, moreover, the restriction

$$\varphi|_{H_0}: H_0 \to H$$

is clearly an isomorphism, thus (2) is proved. To see (3), simply note that  $\varphi$  is onto, and apply the first isomorphism theorem.

Finally, to prove (4), observe that the following diagram commutes (note that the conjugation action  $H_0 \times K_0 \to K_0$  is labelled  $\gamma$ ):

$$\begin{array}{cccc} H_0 \times K_0 & \xrightarrow{\gamma} K_0 & & ((h,1),(1,k)) & \stackrel{\gamma}{\longmapsto} (h,1)^{-1}(1,k)(h,1) = (1,k^{\phi(h)}) \\ (\varphi|_{H_0,\theta}) & & \downarrow_{\theta} & & (\varphi|_{H_0,\theta}) \\ H \times K & \xrightarrow{\phi} K & & (h,k) & \stackrel{\psi}{\longmapsto} & k^{\phi(h)} \end{array}$$

In what follows I will tend to identify the groups  $K_0$  and K, and the groups  $H_0$  and H. This allows me to abuse notation and think of  $K \rtimes_{\phi} H$  as a semi-direct product of two of its *subgroups*, a point of view that is helpful <sup>16</sup> Usually, too, the homomorphism  $\phi$  is obvious from the context, so I will tend to write the semidirect product as  $K \rtimes H$ .

Suppose that G is a group with normal subgroup K such that  $G/K \cong H$ . In this case we write G = K.Hand call G an extension of K by  $H^{17}$  A semi-direct product  $G := K \rtimes H$  is an example of a group K.H, but it is important to note that not all groups K.H can be expressed as a semi-direct product. In the literature, groups K.H that can be expressed as a semi-direct product are called *split extensions* and are sometimes denoted K : H; those that can't be expressed as a semi-direct product are called *non-split extensions*.<sup>18</sup> The following exercise allows us to recognise when an extension is split.

**(E4.11)** Suppose that K is a normal subgroup of a group G with G/K isomorphic to a group H. The extension H.K is split if and only if G contains a subgroup J such that G = JK and  $J \cap K = \{1\}$ .

**(E4.12)** Prove that, for all integers  $n \ge 2$ ,  $\operatorname{Sym}(n) \cong \operatorname{Alt}(n) : C_2$ .

**(E4.13)** Find an example of a group G = K.H (where K and H are both non-trivial finite groups) which is non-split. Hint: there is precisely one example with  $|G| \leq 7$ , and it is abelian. The smallest non-abelian examples have |G| = 8.

**(E4.14)** Write down as many groups G as you can, for which G = K.H where  $K \cong A_6$  and  $H \cong C_2$ . Identify those that can be written as split extensions.

One final remark: there is an unfortunate notational issue that crops up in this area. For two subgroups H and K of a group G, the following definition of the product of H and K is standard:

$$HK := \{hk \mid h \in H, k \in K\}.$$

In general this set is not a group.

(E4.15) Prove that if  $H \leq N_G(K)$ , then HK = KH, and HK is a group.

Note that if  $H \leq N_G(K)$ , then (E4.11) implies that the set H.K is isomorphic to  $K \rtimes H$  if and only if  $H \cap K = \{1\}$ .

<sup>&</sup>lt;sup>16</sup>Writing  $G = K \rtimes \phi_H$  where K and H are subgroups of G is sometimes referred to as an internal direct product of K and H.

<sup>&</sup>lt;sup>17</sup>Warning: Some authors call this an extension of H by K.

<sup>&</sup>lt;sup>18</sup>If you know about short exact sequences, then this terminology will make sense to you. If you don't, I recommend you look 'em up.

4.5. Almost simple groups. We have already seen the conjugation action  $\gamma$  of a group G on itself,  $\gamma$  has associated homomorphism  $\gamma^* : G \to \operatorname{Aut}(G)$  with kernel equal to Z(G), the center of G. If Z(G) is trivial, then  $\gamma^*$  yields an embedding of G into its own automorphism group.

Let us consider the special case when G = S, a non-abelian finite simple group. The following lemma gives information about the structure of Aut(S).

**Lemma 4.8.** Let S be a non-abelian finite simple group. Then Aut(S) contains a unique normal subgroup  $S_0$  isomorphic to S and every non-trivial normal subgroup of Aut(S) contains  $S_0$ .

*Proof.* We have already observed that  $\operatorname{Aut}(S)$  contains a subgroup  $S_0$  isomorphic to S - it is the image of  $\gamma^*$  and is normal in  $\operatorname{Aut}(S)$  by Lemma 3.5. One can quickly check that the action of  $\operatorname{Aut}(S)$  on  $S_0$  via conjugation is isomorphic to the action of  $\operatorname{Aut}(S)$  on S given by the identity embedding  $\operatorname{Aut}(S) \to \operatorname{Aut}(S)$ .

Suppose that N is a non-trivial normal subgroup of S. Since S is simple,  $S \cap N$  is either trivial or equal to S. If the latter, then we conclude that N contains S. Thus, to prove the result, we assume that  $S \cap N$  is trivial, and we demonstrate a contradiction.

Let  $s \in S, n \in N$  and observe that the commutator  $s^{-1}n^{-1}sn$  is an element of both S and N. Thus, by assumption, this commutator is trivial, and we conclude that N centralizes S. But this implies that the conjugation action of N on S is trivial, contradicting the fact that N contains non-trivial automorphisms of S. We are done.

In what follows we will identify the two groups S and  $S_0$ , and think of S as a subgroup of Aut(S). The lemma implies that we can do this without ambiguity. Now we are able to define the notion of an *almost simple group*: it is a group G such that

$$S \le G \le Aut(S)$$
.

(E4.16) Prove that a group G is almost simple if and only if the following two conditions hold:

(1) G contains a normal subgroup S that is non-abelian and simple;

(2) any non-trivial normal subgroup of G contains S.

Clearly, if  $n \ge 5$ , then Alt(n) is itself an almost simple group, as is Sym(n). One consequence of the classification of finite simple groups is that all finite almost simple groups are also classified.

(E4.17) Prove that Sym(n) is almost simple for  $n \ge 5$ .

**(E4.18)** (Hard) How many almost simple groups (up to isomorphism) have a normal subgroup isomorphic to Alt(6)?

4.6. Aut(Alt(n)). In this section we will classify all of the almost simple groups with a normal subgroup isomorphic to Alt(n) for some n. Equivalently we will describe the automorphism group of Alt(n). We know already that  $Sym(n) \leq Aut(Alt(n))$ , and it turns out that in nearly all cases, the reverse inclusion also holds:

**Theorem 4.9.** If n = 5 or  $n \ge 7$ , then  $\operatorname{Aut}(\operatorname{Alt}(n)) = \operatorname{Sym}(n)$ . If n = 6, then  $\operatorname{Aut}(\operatorname{Alt}(n))$  contains  $\operatorname{Sym}(n)$  as an index 2 subgroup.

Our proof of Theorem 4.9 proceeds by considering 3-cycles in Alt(n). Observe first that a product of two 3-cycles can take one of the following four forms (in each case, we assume that all letters are distinct):

$$(a, b, c)(a, b, c) = (a, d)(b, c);$$
  $(a, b, c)(a, d, b) = (b, c, d);$   
 $(a, b, c)(a, d, e) = (a, b, c, d, e);$   $(a, b, c)(d, e, f).$ 

**Lemma 4.10.** Let  $\phi$  be an automorphism of Alt(n) such that for any 3-cycle  $\sigma$ ,  $\phi(\sigma)$  is a 3-cycle. Then there exists an element  $\rho \in \text{Sym}(n)$  such that  $\phi(\sigma) = \rho^{-1}\sigma\rho$ .

*Proof.* Consider the 3-cycles  $u_i = (1, 2, i)$  where i = 3, ..., n. Observe that if  $i \neq j$ , then the product  $u_i u_j$  has order 2. For i = 3, ..., n define  $v_i = \phi(u_i)$  and observe that (by assumption)  $v_i$  is a 3-cycle, and that the order of  $v_i v_j = 2$  whenever  $i \neq j$ . Thus, examining the forms above, observe that  $v_1 = (a, b, c)$  and  $v_2 = (a, b, d)$ .

Consider  $v_3$ . If  $v_3$  fixes a, then in order for  $v_1v_3$  (resp.  $v_2v_3$ ) to have order 2 we must have  $v_3 = (b, c, f)$  (resp. (b, d, g)). This is a contradiction, thus we obtain that  $v_3$  does not fix a. A similar analysis for b implies that  $v_3 = (a, b, e)$  for some e (distinct from a, b, c and d).

We can iterate this analysis to conclude that there are distinct  $a_1, \ldots, a_n$  such that

$$\phi(1,2,i) = (a_1,a_2,a_i).$$

Now let  $\rho \in \text{Sym}(n)$  be the permutation for which  $i^{\rho} = a_i$  and we obtain immediately that

$$\rho^{-1}(1,2,i)\rho = (a_1,a_2,a_i) = \phi(1,2,i).$$

Then (E4.9) yields the result.

**Lemma 4.11.** If  $n \ge 3$  and  $n \ne 6$ , then any automorphism of Alt(n) is obtained by a conjugation of an element of Sym(n). Thus Aut(Alt(n)) = Sym(n).

*Proof.* Let  $\phi$  be an automorphism of  $G := \operatorname{Alt}(n)$  and let  $\sigma$  be a 3-cycle. The image of  $\phi(\sigma)$  has order 3, i.e. it is a product of r distinct 3-cycles for some  $r \ge 1$ .

Observe that, for n = 3, 4, 5 any element of order 3 is a 3-cycle. Thus the supposition of Lemma 4.10 is true by default and the result follows. Assume, from here on, that  $n \ge 6$ .

One can check easily enough that

$$|C_G(\sigma)| = \frac{3}{2}(n-3)!$$
, and  $|C_G(\phi(\sigma))| = \frac{3^r}{2}r!(n-3r)!$ 

Since  $C_G(\sigma) \cong C_G(\phi(\sigma))$  we conclude that

$$\frac{3}{2}(n-3)! = \frac{3^r}{2}r!(n-3r)!.$$

A little bit of checking confirms that either r = 1 or else (r, n) = (2, 6) and we are done.

(E4.19) If  $n \ge 3$  and  $n \ne 6$ , then any automorphism of Sym(n) is inner. Thus Aut(Sym(n)) = Sym(n).

The proof of Lemma 4.11 implicitly used the following result (that we have already seen for the case of inner automorphisms). The final part will be needed below.

**(E4.20)** Let  $\phi$  be an automorphism of a group G and let  $g, h \in G$ . Then

- g and h have the same order;
- $C_G(g) \cong C_G(\phi(g));$
- If g and h are conjugate in G, then  $\phi(g)$  and  $\phi(h)$  are conjugate in G.<sup>19</sup>

In light of Lemma 4.11, to prove Theorem 4.9, we need only study Alt(6). We need the following result.

**(E4.21)** Suppose that H is a subgroup of a group G and suppose that there exists  $g \in G$  such that, for all  $h \in G \setminus H$ ,  $gh \in H$ . Then  $|G:H| \leq 2$ .

Observe that Alt(6) has exactly two conjugacy classes of elements of order 3, thus any automorphism g of Alt(6) either swaps these conjugacy classes or fixes them. Let g be an automorphism that swaps these classes, and consider  $h \in Aut(Alt(6))$ . If h fixes the classes, then, by Lemma 4.10,  $h \in Sym(6)$ , if h swaps these classes then gh fixes these classes and, again by Lemma 4.10,  $gh \in Sym(6)$ .

Now (E4.21) implies that Aut(Alt(6)) contains Sym(6) as a subgroup of index at most 2. To prove Theorem 4.9, then, we need to show that there exists an automorphism of Alt(6) that is not contained in Sym(6). This is our task for the rest of the section.

We proceed by studying a particular subgroup H of Alt(6) that is isomorphic to Alt(5). Of course Alt(6) has some obvious subgroups of this form – take the stabilizer of a point in the action on  $\{1, \ldots, 6\}$ . The subgroup we construct is different – it acts *transitively* on  $\{1, \ldots, 6\}$ . The next exercise gets us under way.

(E4.22) Prove that Alt(5) contains 6 Sylow 5-subgroups.

<sup>&</sup>lt;sup>19</sup>In particular this implies that Aut(G) has a well-defined action on the set of conjugacy classes of G. This is another way of looking at the situation described in §4.2.1.

Let  $\Omega$  be the set of Sylow 5-subgroups of Alt(5). By Sylow's theorems Alt(5) acts transitively by conjugation on  $\Omega$ . Of course the action is faithful (since Alt(5) is simple) and hence Lemma 3.1 yields an embedding Alt(5)  $\hookrightarrow$  Sym(6). Write H for this copy of Alt(5) in Sym(6).

**(E4.23)** Prove that, in fact,  $H \hookrightarrow Alt(6)$ . Prove, moreover, that H has 6 distinct conjugates in Alt(6).

Let  $\Gamma$  be the set of 6 conjugates of H in Alt(6). Now Alt(6) acts faithfully and transitively on these 6 conjugates and so we obtain an embedding Alt(6)  $\hookrightarrow$  Sym(6). By the same reasoning as in the previous exercise we conclude that, in fact, Alt(6)  $\hookrightarrow$  Alt(6) and so, in particular, this embedding is an isomorphism.

(E4.24) Prove that this isomorphism is not induced by an element of Sym(6).

4.7. A first look at subgroups. One of the main aims of the first half of the course is to understand the subgroup structure of Alt(n) and Sym(n). We begin that process now.

A useful definition: suppose a group G acts on a set  $\Omega$ , and suppose that  $\Gamma$  is a proper subset of  $\Omega$ . The setwise stabilizer of  $\Gamma$  is

 $G_{\Gamma} := \{ g \in G \mid \gamma^g \in \Gamma \text{ for all } \gamma \in \Gamma \}.$ 

If  $H \leq G_{\Gamma}$  we say things like '*H* preserves  $\Gamma$  setwise'.

The following two exercises are focused on the same idea, but the second uses categorical language. Note that, by convention, we define  $Sym(\emptyset) = Sym(0) = \{1\}$ .

- **(E4.25)** Let  $\Omega$  be a finite set of order n, and let  $\Gamma$  be a subset of  $\Omega$  with  $|\Gamma| = k$ .
- (1) There is a unique subgroup G of  $\operatorname{Sym}(\Omega)$  that preserves  $\Gamma$  setwise and is isomorphic to  $\operatorname{Sym}(k) \times \operatorname{Sym}(n-k)$ ;
- (2) if  $H \leq \text{Sym}(\Omega)$  preserves  $\Gamma$  setwise, then  $H \leq G$ .
- (E4.26) Consider a category called Intrans

**Objects**: An object is a pair  $(\Gamma, \Delta)$  where  $\Gamma$  is a finite set and  $\Delta$  is a subset of  $\Gamma$ .

- **Arrows**: An arrow  $(\Gamma, \Delta) \to (\Gamma', \Delta')$  is a function  $f : \Gamma \to \Gamma'$  such that  $x \in \Delta \Longrightarrow f(x) \in \Delta'$ .
- (1) Prove that **Intrans** is a category.
- (2) Prove that if X is an object in **Intrans**, then  $\operatorname{Aut}(X) \cong \operatorname{Sym}(\Delta) \times \operatorname{Sym}(\Gamma \setminus \Delta)$ .
- (3) Prove that if G acts on  $X = (\Gamma, \Delta)$  as an object from **Intrans**, then G is a subset of the setwise stabilizer of  $\Delta$ , and conversely.

The following proposition is an immediate corollary of either of the previous two exercises.

**Proposition 4.12.** Let  $H \leq \text{Sym}(\Omega)$  where  $|\Omega| < \infty$ . One of the following holds:

- (1) *H* is intransitive and  $H \leq \text{Sym}(k) \times \text{Sym}(n-k)$  for some 1 < k < n;
- (2) H is transitive.<sup>20</sup>

The following exercise is included as food for thought (i.e. parts of it might be rather hard).

(E4.27) Let  $\Omega$  be a subset of order n and let  $\Gamma$  and  $\Delta$ ) be subsets of  $\Omega$  of order k. Let H (resp. K) be the setwise stabilizer of  $\Gamma$  (resp.  $\Delta$ ) in Sym(n). For what values of n and k is H maximal? Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does Sym(n) contain?

(E4.28) Describe the intersection of  $Sym(k) \times Sym(n-k)$  with Alt(n). Is it maximal in Alt(n)? How many conjugacy classes of such subgroups are there?

<sup>&</sup>lt;sup>20</sup>Note that, since H is a permutation group, I feel at liberty to write things like 'H is intransitive' when I really mean something like 'the action of H on  $\Omega$  induced by restricting the action of  $Sym(\Omega)$  on  $\Omega$  is intransitive'. This sort of terminology will crop up from here on without further comment.