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Figure 2. A representation of the permutation (1, 2, 3, 4)(5)(6, 7)

4. The alternating groups

Throughout this section Ω is a finite set of order n. In what follows we will often assume, without
comment, that the set Ω is equal to the set {1, . . . , n}, and we will write Sym(Ω) or Sym(n) for the
symmetric group on Ω, the set of all permutations of the set Ω.
Our aim in this section is to take a first look at Alt(Ω), the alternating group on Ω, noting down some

basic properties. Let us begin by reminding ourselves of its definition:

4.1. Definition. Recall that a transposition is an element of Sym(Ω) that fixes all but two elements of Ω,
and these two it swaps. In cycle notation, then, a transposition g is written (α, β) where α and β are the
two elements of Ω that are swapped by g.
Our first exercise is easy and fundamental.

(E4.1) Every element of Sym(Ω) can be written as a finite product of transpositions.12

Now define the function

(3)

sgn : Sym(n)→ C2,

g �→
�
1, if g is a product of an even number of transpositions;
−1, if g is a product of an odd number of transpositions.

Note that we write C2 for the cyclic group of order 2.

Lemma 4.1. The function sgn is a group homomorphism.

Proof. The key thing to check here is that sgn is a well-defined function - once this is established, the fact
that it is a group homomorphism is immediate.
To check well-definedness we must show that no permutation g can be written as a product of transpo-

sitions in two different ways, one with an even number of transpositions, the other with an odd number.
Suppose, for a contradiction, that such a g does exist. Clearly the same property holds for g−1 and we
conclude that the same property holds for 1 = gg−1.
We must show, then, that the identity permutation cannot be written as a product of an odd number of

transpositions. To see this, let us represent a permutation g ∈ Sym(Ω) as two rows, both labelled 1, . . . , n
with lines taking the upper row to the lower row according to the action of g. Rather than explain this
rigorously, we refer to Figure 2 which should make clear what is going on. Observe that if we represent a
transposition (i, j) in this way, then the number of ‘crossings’ in the diagram is an odd number - the lines
originating at i and j cross each other once, plus they each cross every line originating at a number k such
that i < k < j. Since these are all the crossings for a transposition, their number is odd.
We can multiply two permutations using this notation, by writing one on top of the other and connecting

the relevant lines. If we consider a product of an odd number of transpositions, then the representation we
obtain will have an odd number of crossings - an odd number at each level, and an odd number of levels.
On the other hand observe that if the product of k permutations is equal to the identity, then the

representation of this product will have an even number of crossings, since any two lines that cross must
cross ‘back again’. We are done. �

12Put another way - and using terminology introduced in the previous chapter - this exercise asserts, precisely, that Sym(Ω)
is generated by the set of all transpositions.
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The function sgn is clearly surjective, hence its kernel is a normal subgroup of Sym(Ω) of index 2. We
define Alt(Ω) to be equal to the kernel of sgn, i.e. Alt(Ω) is the set of all permutations that can be written
as a product of an even number of transpositions.
In what follows we will sometimes write Alt(n) as a synonym for Alt(Ω).

(E4.2) If Ω is an infinite set, then one defines the finitary symmetric group to be the set of all
permtuations that fix all but a finite number of elements of Ω.
(1) Prove that FinSym(Ω) is a group.
(2) Prove that FinSym(Ω) is generated by the set of all transpositions.
(3) Prove that the function sgn given at (3) is a group homomorphism from FinSym(Ω) to C2.
(4) (Harder) Prove that the kernel of sgn (known as the finitary alternating group) is an infinite

simple group.

4.2. Conjugacy classes. For a fixed positive integer n, we define a partition of n to be a non-decreasing
list of positive integers, λ, that sum to n; i.e.

λ = [1, . . . , 1� �� �
n1

, 2, . . . , 2� �� �
n2

, 3, . . . , 3� �� �
n3

, . . . ]

where n =
�

i ini. We write the partition λ as 1n12n23n3 · · · .
Recall that if g ∈ Sym(Ω), then g can be written as the product of a disjoint set of cycles from Sym(Ω).

If we order the multiset of lengths of these cycles appropriately, then we obtain a partition of n, and this
partition is called the cycle type of g. We have the following result from basic group theory.

(E4.3) Let g, h be two elements of Sym(Ω). Then g and h are conjugate in Sym(Ω) if and only if

they have the same cycle type.

Exercise (E3.18) implies that Alt(Ω) is a union of conjugacy classes of Sym(Ω).

(E4.4)Let C be a conjugacy class of Sym(Ω) corresponding to partition 1n12n23n3 · · · . Then C ⊂
Alt(Ω) if and only if

n2 + n4 + n6 + · · ·
is even.

We are interested in describing the conjugacy classes of Alt(Ω). An immediate corollary of (E4.3) is the
following.

Corollary 4.2. Let g, h be two elements of Alt(Ω). If g and h are conjugate in Alt(Ω), then g and h have
the same cycle type.

We would like to prove a converse. The following lemma does the job.

Lemma 4.3. Let C be a conjugacy class of Sym(Ω) that is a subset of Alt(Ω). Either C is a conjugacy
class of Alt(Ω) or C is the union of two conjugacy classes of Alt(Ω) of equal size. The latter happens if
and only if, for g ∈ C, CSym(Ω)(g) ≤ Alt(Ω).

Proof. Let g ∈ C and let K := CSym(Ω)(g). The orbit-stabilizer theorem implies that

|C| = |Sym(Ω)|
|K|

Clearly CAlt(Ω)(g) = K ∩ Alt(Ω).
Case 1: Suppose that K ≤ Alt(Ω). Then (by the orbit-stabilizer theorem) the conjugacy class of g in

Alt(Ω) has size
|Alt(Ω)|
|K| =

1

2
|C|.

Note that if the supposition is true for some g ∈ C, then it is true for all g ∈ C. Thus the result follows.
Case 2: Suppose that K �≤ Alt(Ω). Then CAlt(Ω) is an index 2 subgroup of K and, by the orbit-stabilizer

theorem, the conjugacy class of g in Alt(Ω) has size

|Alt(Ω)|
1
2
|K| = |C|.
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In other words C is a conjugacy class of Alt(Ω), and the result follows. �
(E4.5) Let C be a conjugacy class of Sym(n) of type 1a12a23a3 · · · . Suppose that g ∈ C ⊂ Alt(n).
The following are equivalent:
(1) C is the union of two conjugacy classes of Alt(n);
(2) ai ≤ 1 for all i, with ai = 0 for all even i.

The following exercise will be used shortly.

(E4.6) Prove that, if n ≥ 5 and C is a non-trivial conjugacy class of Alt(n), then |C| > n.

4.2.1. An extension. It should be clear that Lemma 4.3 is a special case of a more general result dealing
with the following setting: G is a finite group, N is a normal subgroup, and C is a conjugacy class of G
that is a subset of N .

(E4.7) The set C is the union of a number of conjugacy classes, C1, . . . , Ck, of N ; the classes
C1, . . . Ck are of equal size; finally

k =
|G : N |

|CG(g) : CN (g)| ,

where g ∈ C.

In this situation we say that ‘the G-conjugacy class C splits into k N -conjugacy classes.’

4.3. Simplicity.

Lemma 4.4. Alt(5) is simple.

Proof. The group Alt(5) contains a single element of type 15, 15 of type 1122 (all conjugate), 20 of type
1122 (split into two conjugacy classes) and 24 of type 51 (all conjugate).
A normal subgroup of Alt(5) must be a union of some of these five conjugacy classes, and one of them

must be the conjugacy class of size 1 containing the identity. Furthermore such a union must have order
dividing 60. A quick check implies that Alt(5) contains only {1} and itself as normal subgroups. �

(E4.8) Write down the subgroup lattice of Alt(4). Identity which subgroups are normal and thereby

demonstrate that Alt(4) is not simple. Prove that Alt(2) and Alt(3) are simple and abelian.

Before proving our main result, we need the following.13

(E4.9) Prove that the group Alt(n) is generated by the set of all 3-cycles (a 3-cycle is an element
of cycle type 1n−331). Show, in fact, that the following set of 3-cycles is sufficient to generate
Alt(n):

{(1, 2, i) | i = 3, . . . , n}.

Theorem 4.5. Alt(n) is simple for n ≥ 5.

Proof. We proceed by induction on n. We have proved the base case, when n = 5. Suppose that the result
is true for Alt(n) and let K be a normal subgroup of G = Alt(n+ 1). Then G has a subgroup H of index
n + 1 that is the stabilizer of a point in the natural action of G on {1, . . . , n}. Clearly H ∼= Alt(n). By
induction H is simple, thus K ∩H is either trivial, or equal to H.
Case 1: K ∩H is trivial. In this case |K| ≤ n + 1 and, in particular, Alt(n + 1) contains a non-trivial

conjugacy class of order at most n+ 1. This contradicts (E4.6).14

Case 2: K ∩H = H. Then K contains H and, since K is normal, K contains all conjugates of H. Since
all 3-cycles fix a point in the natural action on {1, . . . , n}, K contains all 3-cycles. Now (E4.9) implies that
K = G as required. �

13We ask for a proof of a stronger statement (“Show, in fact...”) as this will come in handy for a later result.
14A reminder: if you are hazy as to why |K ∩H| ≤ n+1 in this case, then recall the following basic result: If G,H,K are

all groups with H,K ≤ G, then, writing KH = {kh | k ∈ K,h ∈ H}, we have |KH| = |K|·|H|
|K∩H| .
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4.4. Semidirect products. The group Alt(n) is a normal subgroup of Sym(n). To understand the
relationship between these two groups, we need to discuss semidirect products. These will be useful in
many places throughout the course, for instance they are needed for the definition of a wreath product a
little later.
Let H and K be groups. Now suppose that H acts on K as an object from Group; equivalently (by

Lemma 3.2), let φ : H → Aut(K) be a group homomorphism.
Consider the set whose elements are ordered pairs with the first entry from H and the second from K15.

Define a multiplication operation on this set as follows:

(h1, k1)(h2, k2) = (h1 · h2, k
φ(h2)
1 · k2).

Lemma 4.6. The set and multiplication operation just defined form a group.

This group is denoted K �φ H.

Proof. The multiplication defined above is clearly a well-defined binary operation. Let us check the group
axioms in turn:
Associativity: Let h1, h2, h3 ∈ H and k1, k2, k3 ∈ K. Now observe that

(h1, h)2) ((h2, k2)(h3, k3)) = (h1, k1)(h2h3, k
φ(h3)
2 k3)

= (h1h2h3, k
φ(h2h3)
1 k

φ(h3)
2 k3), while

((h1, k1)(h2, k2)) (h3, k3) = (h1h2, k
φ(h2)
1 · k2)(h3, k3)

= (h1h2h3, (k
φ(h2)
1 k2)

φ(h3)k3)

and associativity follows.
Identity: The identity element is (1, 1) and observe that for h ∈ H, k ∈ K

(1, 1)(h, k) = (h, 1φ(h)k) = (h, k)

(h, k)(1, 1) = (h, kφ(1)1) = (h, k).

Inverse: One can easily check that, for h ∈ H, k ∈ K, (h−1, (k−1)φ(h
−1)) is the inverse of (h, k) for the

multiplication defined above. We are done. �
(E4.10) Suppose that the action of H on K is the trivial action. What is K �φ H?

The next lemma lists some basic properties of this construction.

Lemma 4.7. Let G = K �φ H.

(1) The subset K0 := {(1, k) | k ∈ K} is a normal subgroup of K �φ H that is isomorphic to K;
(2) The subset H0 := {(h, 1) | h ∈ H} is a subgroup of K �φ H that is isomorphic to K;
(3) G/K0

∼= H;
(4) The natural conjugation action of H0 on K0 is isomorphic to the action of H on K given by φ.

Proof. Define a function
ϕ : K �φ H → H

(h, k) �→ h.

Now, for any (h1, k1), (h2, k2) ∈ G observe that

ϕ ((h1, k1)(h2, k2)) = ϕ(h1h2, k
φ(h2)
1 k2) = h1h2 = ϕ(h1, k1)ϕ(h2, k2).

Thus ϕ is a group homomorphism. It is clear that K0 = ker(ϕ) thus K0 is a normal subgroup of G and
(1) follows. Now define a function

θ : K0 → K

(1, k) �→ k.

15In other words consider the set (not the group) H ×K.



FINITE PERMUTATION GROUPS AND FINITE CLASSICAL GROUPS 19

It is clear that θ is an isomorphism and (1) is proved. Now the subset H0 is obviously a subgroup and,
moreover, the restriction

ϕ|H0 : H0 → H

is clearly an isomorphism, thus (2) is proved. To see (3), simply note that ϕ is onto, and apply the first
isomorphism theorem.
Finally, to prove (4), observe that the following diagram commutes (note that the conjugation action

H0 ×K0 → K0 is labelled γ):

H0 ×K0 K0

H ×K K

γ

(ϕ|H0
,θ) θ

φ

((h, 1), (1, k)) (h, 1)−1(1, k)(h, 1) = (1, kφ(h))

(h, k) kφ(h)

γ

(ϕ|H0
,θ) θ

ψ

�

In what follows I will tend to identify the groups K0 and K, and the groups H0 and H. This allows me
to abuse notation and think of K �φ H as a semi-direct product of two of its subgroups, a point of view
that is helpful 16 Usually, too, the homomorphism φ is obvious from the context, so I will tend to write
the semidirect product as K �H.
Suppose that G is a group with normal subgroup K such that G/K ∼= H. In this case we write G = K.H

and call G an extension of K by H.17 A semi-direct product G := K �H is an example of a group K.H,
but it is important to note that not all groups K.H can be expressed as a semi-direct product. In the
literature, groups K.H that can be expressed as a semi-direct product are called split extensions and are
sometimes denoted K : H; those that can’t be expressed as a semi-direct product are called non-split
extensions.18 The following exercise allows us to recognise when an extension is split.

(E4.11) Suppose that K is a normal subgroup of a group G with G/K isomorphic to a group

H. The extension H.K is split if and only if G contains a subgroup J such that G = JK and

J ∩K = {1}.
(E4.12) Prove that, for all integers n ≥ 2, Sym(n) ∼= Alt(n) : C2.

(E4.13) Find an example of a group G = K.H (where K and H are both non-trivial finite groups)

which is non-split. Hint: there is precisely one example with |G| ≤ 7, and it is abelian. The

smallest non-abelian examples have |G| = 8.

(E4.14) Write down as many groups G as you can, for which G = K.H where K ∼= A6 and

H ∼= C2. Identify those that can be written as split extensions.

One final remark: there is an unfortunate notational issue that crops up in this area. For two subgroups
H and K of a group G, the following definition of the product of H and K is standard:

HK := {hk | h ∈ H, k ∈ K}.
In general this set is not a group.

(E4.15) Prove that if H ≤ NG(K), then HK = KH, and HK is a group.

Note that if H ≤ NG(K), then (E4.11) implies that the set H.K is isomorphic to K � H if and only if
H ∩K = {1}.

16Writing G = K � φH where K and H are subgroups of G is sometimes referred to as an internal direct product of K
and H.

17Warning: Some authors call this an extension of H by K.
18If you know about short exact sequences, then this terminology will make sense to you. If you don’t, I recommend you

look ’em up.
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4.5. Almost simple groups. We have already seen the conjugation action γ of a group G on itself, γ
has associated homomorphism γ∗ : G → Aut(G) with kernel equal to Z(G), the center of G. If Z(G) is
trivial, then γ∗ yields an embedding of G into its own automorphism group.
Let us consider the special case when G = S, a non-abelian finite simple group. The following lemma

gives information about the structure of Aut(S).

Lemma 4.8. Let S be a non-abelian finite simple group. Then Aut(S) contains a unique normal subgroup
S0 isomorphic to S and every non-trivial normal subgroup of Aut(S) contains S0.

Proof. We have already observed that Aut(S) contains a subgroup S0 isomorphic to S - it is the image of
γ∗ and is normal in Aut(S) by Lemma 3.5. One can quickly check that the action of Aut(S) on S0 via
conjugation is isomorphic to the action of Aut(S) on S given by the identity embedding Aut(S)→ Aut(S).
Suppose that N is a non-trivial normal subgroup of S. Since S is simple, S ∩N is either trivial or equal

to S. If the latter, then we conclude that N contains S. Thus, to prove the result, we assume that S ∩N
is trivial, and we demonstrate a contradiction.
Let s ∈ S, n ∈ N and observe that the commutator s−1n−1sn is an element of both S and N . Thus, by

assumption, this commutator is trivial, and we conclude that N centralizes S. But this implies that the
conjugation action of N on S is trivial, contradicting the fact that N contains non-trivial automorphisms
of S. We are done. �

In what follows we will identify the two groups S and S0, and think of S as a subgroup of Aut(S). The
lemma implies that we can do this without ambiguity. Now we are able to define the notion of an almost
simple group: it is a group G such that

S ≤ G ≤ Aut(S).

(E4.16)Prove that a group G is almost simple if and only if the following two conditions hold:
(1) G contains a normal subgroup S that is non-abelian and simple;
(2) any non-trivial normal subgroup of G contains S.

Clearly, if n ≥ 5, then Alt(n) is itself an almost simple group, as is Sym(n). One consequence of the
classification of finite simple groups is that all finite almost simple groups are also classified.

(E4.17)Prove that Sym(n) is almost simple for n ≥ 5.

(E4.18) (Hard) How many almost simple groups (up to isomorphism) have a normal subgroup

isomorphic to Alt(6)?

4.6. Aut(Alt(n)). In this section we will classify all of the almost simple groups with a normal subgroup
isomorphic to Alt(n) for some n. Equivalently we will describe the automorphism group of Alt(n). We
know already that Sym(n) ≤ Aut(Alt(n)), and it turns out that in nearly all cases, the reverse inclusion
also holds:

Theorem 4.9. If n = 5 or n ≥ 7, then Aut(Alt(n)) = Sym(n). If n = 6, then Aut(Alt(n)) contains
Sym(n) as an index 2 subgroup.

Our proof of Theorem 4.9 proceeds by considering 3-cycles in Alt(n). Observe first that a product of
two 3-cycles can take one of the following four forms (in each case, we assume that all letters are distinct):

(a, b, c)(a, b, c) = (a, d)(b, c); (a, b, c)(a, d, b) = (b, c, d);

(a, b, c)(a, d, e) = (a, b, c, d, e); (a, b, c)(d, e, f).

Lemma 4.10. Let φ be an automorphism of Alt(n) such that for any 3-cycle σ, φ(σ) is a 3-cycle. Then
there exists an element ρ ∈ Sym(n) such that φ(σ) = ρ−1σρ.

Proof. Consider the 3-cycles ui = (1, 2, i) where i = 3, . . . , n. Observe that if i �= j, then the product uiuj

has order 2. For i = 3, . . . , n define vi = φ(ui) and observe that (by assumption) vi is a 3-cycle, and that
the order of vivj = 2 whenever i �= j. Thus, examining the forms above, observe that v1 = (a, b, c) and
v2 = (a, b, d).
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Consider v3. If v3 fixes a, then in order for v1v3 (resp. v2v3) to have order 2 we must have v3 = (b, c, f)
(resp. (b, d, g)). This is a contradiction, thus we obtain that v3 does not fix a. A similar analysis for b
implies that v3 = (a, b, e) for some e (distinct from a, b, c and d).
We can iterate this analysis to conclude that there are distinct a1, . . . , an such that

φ(1, 2, i) = (a1, a2, ai).

Now let ρ ∈ Sym(n) be the permutation for which iρ = ai and we obtain immediately that

ρ−1(1, 2, i)ρ = (a1, a2, ai) = φ(1, 2, i).

Then (E4.9) yields the result. �

Lemma 4.11. If n ≥ 3 and n �= 6, then any automorphism of Alt(n) is obtained by a conjugation of an
element of Sym(n). Thus Aut(Alt(n)) = Sym(n).

Proof. Let φ be an automorphism of G := Alt(n) and let σ be a 3-cycle. The image of φ(σ) has order 3,
i.e. it is a product of r distinct 3-cycles for some r ≥ 1.
Observe that, for n = 3, 4, 5 any element of order 3 is a 3-cycle. Thus the supposition of Lemma 4.10 is

true by default and the result follows. Assume, from here on, that n ≥ 6.
One can check easily enough that

|CG(σ)| =
3

2
(n− 3)!, and |CG(φ(σ))| =

3r

2
r!(n− 3r)!

Since CG(σ) ∼= CG(φ(σ)) we conclude that

3

2
(n− 3)! = 3r

2
r!(n− 3r)!.

A little bit of checking confirms that either r = 1 or else (r, n) = (2, 6) and we are done. �

(E4.19)If n ≥ 3 and n �= 6, then any automorphism of Sym(n) is inner. Thus Aut(Sym(n)) =

Sym(n).

The proof of Lemma 4.11 implicitly used the following result (that we have already seen for the case of
inner automorphisms). The final part will be needed below.

(E4.20)Let φ be an automorphism of a group G and let g, h ∈ G. Then
• g and h have the same order;
• CG(g) ∼= CG(φ(g));
• If g and h are conjugate in G, then φ(g) and φ(h) are conjugate in G.19

In light of Lemma 4.11, to prove Theorem 4.9, we need only study Alt(6). We need the following result.

(E4.21) Suppose that H is a subgroup of a group G and suppose that there exists g ∈ G such that,

for all h ∈ G\H, gh ∈ H. Then |G : H| ≤ 2.

Observe that Alt(6) has exactly two conjugacy classes of elements of order 3, thus any automorphism g
of Alt(6) either swaps these conjugacy classes or fixes them. Let g be an automorphism that swaps these
classes, and consider h ∈ Aut(Alt(6)). If h fixes the classes, then, by Lemma 4.10, h ∈ Sym(6), if h swaps
these classes then gh fixes these classes and, again by Lemma 4.10, gh ∈ Sym(6).
Now (E4.21) implies that Aut(Alt(6)) contains Sym(6) as a subgroup of index at most 2 . To prove

Theorem 4.9, then, we need to show that there exists an automorphism of Alt(6) that is not contained in
Sym(6). This is our task for the rest of the section.
We proceed by studying a particular subgroup H of Alt(6) that is isomorphic to Alt(5). Of course Alt(6)

has some obvious subgroups of this form – take the stabilizer of a point in the action on {1, . . . , 6}. The
subgroup we construct is different – it acts transitively on {1, . . . , 6}. The next exercise gets us under way.

(E4.22)Prove that Alt(5) contains 6 Sylow 5-subgroups.

19In particular this implies that Aut(G) has a well-defined action on the set of conjugacy classes of G. This is another
way of looking at the situation described in §4.2.1.
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Let Ω be the set of Sylow 5-subgroups of Alt(5). By Sylow’s theorems Alt(5) acts transitively by conjugation
on Ω. Of course the action is faithful (since Alt(5) is simple) and hence Lemma 3.1 yields an embedding
Alt(5) �→ Sym(6). Write H for this copy of Alt(5) in Sym(6).

(E4.23)Prove that, in fact, H �→ Alt(6). Prove, moreover, that H has 6 distinct conjugates in

Alt(6).

Let Γ be the set of 6 conjugates of H in Alt(6). Now Alt(6) acts faithfully and transitively on these 6
conjugates and so we obtain an embedding Alt(6) �→ Sym(6). By the same reasoning as in the previous
exercise we conclude that, in fact, Alt(6) �→ Alt(6) and so, in particular, this embedding is an isomorphism.

(E4.24)Prove that this isomorphism is not induced by an element of Sym(6).

4.7. A first look at subgroups. One of the main aims of the first half of the course is to understand
the subgroup structure of Alt(n) and Sym(n). We begin that process now.
A useful definition: suppose a group G acts on a set Ω, and suppose that Γ is a proper subset of Ω. The

setwise stabilizer of Γ is
GΓ := {g ∈ G | γg ∈ Γ for all γ ∈ Γ}.

If H ≤ GΓ we say things like ‘H preserves Γ setwise’.
The following two exercises are focused on the same idea, but the second uses categorical language. Note

that, by convention, we define Sym(∅) = Sym(0) = {1}.
(E4.25) Let Ω be a finite set of order n, and let Γ be a subset of Ω with |Γ| = k.
(1) There is a unique subgroup G of Sym(Ω) that preserves Γ setwise and is isomorphic to

Sym(k)× Sym(n− k);
(2) if H ≤ Sym(Ω) preserves Γ setwise, then H ≤ G.

(E4.26)Consider a category called Intrans
Objects: An object is a pair (Γ,Δ) where Γ is a finite set and Δ is a subset of Γ.
Arrows: An arrow (Γ,Δ) → (Γ�,Δ�) is a function f : Γ → Γ� such that x ∈ Δ =⇒ f(x) ∈ Δ�.

(1) Prove that Intrans is a category.
(2) Prove that if X is an object in Intrans, then Aut(X) ∼= Sym(Δ)× Sym(Γ\Δ).
(3) Prove that if G acts on X = (Γ,Δ) as an object from Intrans, then G is a subset of the

setwise stabilizer of Δ, and conversely.

The following proposition is an immediate corollary of either of the previous two exercises.

Proposition 4.12. Let H ≤ Sym(Ω) where |Ω| < ∞. One of the following holds:
(1) H is intransitive and H ≤ Sym(k)× Sym(n− k) for some 1 < k < n;
(2) H is transitive.20

The following exercise is included as food for thought (i.e. parts of it might be rather hard).

(E4.27) Let Ω be a subset of order n and let Γ and Δ) be subsets of Ω of order k. Let H (resp.

K) be the setwise stabilizer of Γ (resp. Δ) in Sym(n). For what values of n and k is H maximal?

Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does Sym(n)

contain?

(E4.28) Describe the intersection of Sym(k)× Sym(n− k) with Alt(n). Is it maximal in Alt(n)?

How many conjugacy classes of such subgroups are there?

20Note that, since H is a permutation group, I feel at liberty to write things like ‘H is intransitive’ when I really mean
something like ‘the action of H on Ω induced by restricting the action of Sym(Ω) on Ω is intransitive’. This sort of terminology
will crop up from here on without further comment.


