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5. Primitivity and related notions

In this section we study some key properties of group actions. We will use this material in the next
chapter when we discuss the subgroup structure of Alt(n). Throughout the section G is a finite group
acting on a set Ω.

5.1. Multiple transitivity. As soon as we have an action of a group G on a set Ω, we can define others.
For instance, define an action of G on Ω2 = Ω× Ω via

(ω1, ω2)
g := (ωg

1 , ω
g
2),

for all g ∈ G.
In fact this defines a natural action on the set of distinct pairs,

Ω(2) := {(ω1, ω2) | ω1 �= ω2}.
We say that the original action of G on Ω is 2-transitive if the induced action of G on Ω(2) is transitive.
More generally, let k be an integer such that 1 ≤ k ≤ |Ω|. Define

Ω(k) := {(ω1, ω2, . . . , ωk) | ωi ∈ Ω;ωi �= ωj for all 1 ≤ i < j ≤ k}
The action of G on Ω is k-transitive if the induced action of G on Ω(k) is transitive. Note that an action
is 1-transitive if and only if it is transitive.

(E5.1)For which values of n is the action of D2n on an n-gon, 2-transitive?

(E5.2)Show that, for k ≥ 2, if an action is k-transitive, then it is k − 1-transitive.

(E5.3)Let G = Sn, the symmetric group on n letters. What is the largest value of k for which G

is k-transitive? What about G = An, the alternating group on n letters?

Lemma 5.1. The action of G on Ω is k-transitive if and only if the action of G is transitive and, for any
ω ∈ Ω, the action of the stabilizer of a point Gω on Ω\{ω} is (k − 1)-transitive.

Proof. Suppose that the action of G on Ω is k-transitive, and let (ω1, . . . , ωk) and (γ1, . . . , γk) be elements
of Ω(k). By assumption there exists g ∈ G such that ωg

i = γi for all i = 1, . . . , k. Since (for instance) γ1
and ω1 range over all of Ω we conclude that G acts transitively on Ω.
On the other hand let (ω1, . . . , ωk−1) and (γ1, . . . , γk−1) be elements of (Ω\{ω})(k−1). Then (ω, ω1, . . . , ωk−1)

and (γ1, . . . , ωk−1) are elements of Ω
(k) and so there exists g ∈ G such that ωg = ω and ωg

i = γi for all
i = 1, . . . , k − 1. Thus g ∈ Gω and we conclude that the action of Gω on Ω\{ω} is (k − 1)-transitive.
For the converse, let (ω1, . . . , ωk) and (γ1, . . . , γk) be elements of Ω

(k). Since G acts transitively, there
exist g, h ∈ G such that ωg

1 = ω and γh
1 = ω. Observe that (ωg

2 , . . . , ω
g
k) and (γ

h
1 , . . . , γ

h
k ) are elements of

(Ω\{ω})(k−1). Thus there exists f ∈ Gω such that (ω
g
i )f = γh

i for i = 2, . . . , k. We conclude that

((ωg
i )f)

h−1

= ωgfh−1

i = γi

for all i = 1, . . . , k and we are done. �
Example 15. Let V be a vector space of dimension at least 2 over a finite field K and
consider the action of G = GL(V ) on V ∗ := V \{0} by right multiplication. If g ∈ G, v ∈ V
and c ∈ K, then we know that (c · v)g = c · vg. In particular, if |K| ≥ 2, then we can
choose c �= 1 and w a vector linearly independent from v, and we observe that there exists
no element g ∈ GL(V ) which maps the pair (v, cv) to (v, w). We conclude that the action
of G on V ∗ is not 2-transitive.
If |K| = 2, then any pair of distinct vectors in V ∗ is linearly independent. Thus, given

(v1, v2) and (w1, w2) two pairs of distinct vectors in V ∗ we can extend both to give a basis
for V ; in other words there exists an element g ∈ GL(V ) such that vg1 = w1 and vg2 = w2,
and we conclude that the action of G on V ∗ is 2-transitive.
We will see a generalization of this situation later on when we study the groups PGLn(q);

let us briefly foreshadow what is to come: Observe first that, if g ∈ GL(V ) and v, w ∈ V ∗

lie in a 1-dimensional subspace W of V , then vg and wg lie in a 1-dimensional subspace of
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V that we call W g. Now, letting Ω be the set of 1-dimensional subspaces of V , we have a
well-defined action

GL(V )× Ω→ Ω, (g,W ) �→ W g.

(Note that if |K| = 2, then every element of Ω contains exactly one element of V ∗, and the
action of GL(V ) on Ω is isomorphic to the action of GL(V ) on V ∗.) Now, observe that,
given (V1, V2) and (W1,W2) two pairs of distinct 1-dimensional subspaces of V , there exists
an element g ∈ GL(V ) such that V g

1 = W1 and V g
2 = W2, and we conclude that the action

of G on Ω is 2-transitive.

5.2. Blocks and primitivity. A G-congruence on Ω is an equivalence relation ∼ on Ω such that

α ∼ β =⇒ αg ∼ βg

for all g ∈ G. Any action always admits two G-congruences which we call trivial, as follows:

• Define α ∼1 β if and only if α = β;
• Define α ∼2 β always.

The equivalence classes of a G-congruence are called blocks. Note that, for ∼1, there are |Ω| blocks all
of cardinality 1 while, for ∼2, there is one block of cardinality |Ω|.
The action of G on Ω is called primitive if the only G-congruences on Ω are the trivial ones. We call the

action imprimitive if it is not primitive.21

(E5.4)Prove that if an action is 2-transitive, then it is primitive.

Lemma 5.2. Suppose that G acts primitively on Ω and let N�G with N �≤ G(Ω). Then N acts transitively
on Ω.

Proof. Let Λ1, . . . ,Λk be the orbits of N on Ω. Define an equivalence relation ∼ on Ω such that α ∼ β if
and only if there exists i such that α, β ∈ Λi. Now suppose that α ∼ β. By definition β = αn for some
n ∈ N . Let g ∈ G and observe that

βg = (αn)g = (αg)g
−1ng.

Since N is normal, g−1ng ∈ N and we conclude that αg ∼ βg and hence ∼ is a G-congruence on Ω.
Since G is primitive, ∼ must be one of the two trivial G-congruences, ∼1 or ∼2. Since N �≤ G(Ω) we

conclude that |Λi| ≥ 2 for some i = 1, . . . , k and so ∼�=∼1. We conclude that ∼=∼2 which implies, in
particular that k = 1 and N acts transitively on Ω. �
Taking N to equal G in this lemma we observe, in particular, that if an action is primitive, then it is

transitive.

(E5.5) Prove that if an action is transitive and ∼ is a G-congruence, then all of the blocks asso-

ciated with ∼ have the same cardinality.

(E5.6) Suppose that G acts imprimitively on Ω. Let Δ be a block associated with the action of G

on Ω and let ω ∈ Δ. Prove that Δ is a union of orbits of the stabilizer Gω.

A maximal subgroup of a group G is a subgroup M such that if M ≤ H < G, then H = M . We have
the following result.

Lemma 5.3. Suppose that |Ω| > 2. Then G acts primitively on Ω if and only if G acts transitively and
any stabilizer, Gω, is a maximal subgroup of G.

Observe that the statement is not true for |Ω| = 2 since the trivial action is intransitive and primitive.
Proof. Suppose first that G acts intransitively on Ω. Since G is primitive, the previous lemma applied with
G = N implies that G acts trivially on Ω. But now any equivalence relation on Ω is a G-congruence and
so, since |Ω| > 2, non-trivial G-congruences exist. Thus we assume that G acts transitively on Ω. In what
follows we let ω be some element of Ω.

21I may also write things like “G acts primitively on the set Ω”, and will trust you to figure out what I mean.
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Suppose first that ∼ is a non-trivial G-congruence on Ω. Let Δ be the block associated with ∼ that
contains ω and observe that (E5.5) implies that 1 < |Δ| < n. Consider the setwise stabilizer

GΔ := {g ∈ G | Δg = Δ}.
We know that GΔ is a subgroup of G. What is more, if ω ∈ Δ, then (since Δ is a block) Gω ∈ GΔ. Indeed
(since G is transitive), for any γ ∈ Δ \ {ω}, there exists g ∈ G such that ωg = γ and (since Δ is a block)
g ∈ GΔ \Gω, i.e. Gω is a proper subgroup of GΔ.
On the other hand (since G is transitive) we know that GΔ is a proper subgroup of G. We conclude

that Gω is not maximal, as required.
The converse is given by the following exercise:

(E5.7)Show that if G acts transitively on Ω, and if M is a subgroup of G such that Gω < M < G

for some ω ∈ Ω, then the action is imprimitive.

�
Example 16. Let G = Sym(k) for some k ≥ 5. If M is any maximal subgroup of G that
does not contain Alt(k), then (E4.28) implies that the natural action of G on the coset
space M\G is faithful and transitive. Moreover the stabilizer of the coset M is M itself, a
maximal subgroup. Thus, by Lemma 5.3, the action of G on M\G is primitive.
A concrete example is given by taking M = Sym(2) × Sym(k − 2), the intransitive

subgroup of Sym(k) that we saw in the previous section. In fact the group M is maximal
in Sym(k) (you may have proved this for (E4.27)) and has index 1

2
k(k − 1) in Sym(k).

Thus Lemma 3.1 implies that the action of G = Sym(k) on M\G yields an embedding,
Sym(k) ≤ Sym(1

2
k(k − 1)) such that Sym(k) is a primitive subgroup of Sym(1

2
k(k − 1)).

We shall see later on that primitive subgroups of Sym(n) that are also almost simple are
of considerable interest.

5.3. Wreath products. Let H and K be groups and let ϕ be an action of H on a set Δ. Define
B := KΔ = {b : Δ→ K}, and we define multiplication on B via

δ(bb�) := (δb)(δb�)

for all b, b� ∈ B and δ ∈ Δ. One can check that this turns B into a group.
Now define an action of H on the group B:

(4) ψ : H × B → B, (h, b) �→ bh where bh : Δ→ K, δ �→ (δh
−1

)b.

for all h ∈ H, b ∈ B and δ ∈ Δ.
This definition is a little counter-intuitive, so we should take a moment to check that it really defines

an action.

Lemma 5.4. The function (4) defines an action of H on the group B as an object in Group.

Proof. The given function is clearly well-defined. So now consider b ∈ B and h1, h2 ∈ H and observe that

(bh1)h2 =
�
δ �→ (δh

−1
1 )b

�h2

=
�
δ �→ ((δh

−1
2 )h−1

1 )b
�

=
�
δ �→ (δh

−1
2 h−1

1 )b
�

=
�
δ �→ (δ(h1h2)−1

)b
�
= bh1h2 .

Thus the function is indeed an action. Now consider b1, b2 ∈ B and h ∈ H and observe that

(bh1)(b
h
2) =

�
δ �→ (δh

−1

)b1

�
·
�
δ �→ (δh

−1

)b2

�

=
�
δ �→ (δh

−1
1 )(b1b2)

�
= (b1b2)

h.
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Thus the function defines an action of H on the group B as an object in Group. �

Now the wreath product of K and H, written K �Δ H, is defined to be the semidirect product B�ψ H.22

We call B the base group of the wreath product. Recall that Lemma 4.7 implies that the action by
conjugation of the subgroup H in K �Δ H on the normal subgroup B is isomorphic to the original action
of H on B.
For the rest of this subsection we restrict to the situation where |Δ| = � < ∞. We identify Δ with the

set {1, . . . , �} and now we can think of the group B in another way:

B := K × · · · ×K� �� �
�

.

(An element of B, then, is an �-tuple of elements from K – we can think of it as a function from Δ to K,
just as before, by defining its image at i to equal bi.) The action ψ of H on the group B now corresponds
to permuting coordinates:

(5) ψ : H × B → B, (h, (a1, . . . , a�)) �→ (a1h−1 , . . . , a�h−1 ).

(E5.8)Check that this function is the same as (4) (thereby proving that it defines an action of H

on B as an object in Group).

Example 17. Let us look at a concrete example. We will take Δ = {1, 2} andK = Sym(3).
Then B = K × K is a group of order 36. Now let H = Sym(2) = �g� where g = (1, 2).
Then H �K is a group of order 72 and B is a subgroup of index 2. Observe that

B = {((k1, k2), 1) | k1, k2 ∈ K} and
(H �K) \B = {((k1, k2), g) | k1, k2 ∈ K}.

Now set Ω := {1, . . . , 6}, and we will find a subgroup of Sym(Ω) = Sym(6) that is isomorphic
to H �K. Let Δ = {1, 2, 3} and define

B := {g ∈ Sym(6) | δ ∈ Δ⇒ δg ∈ Δ}.
It is quite easy to see that B = Sym({1, 2, 3})× Sym({4, 5, 6}), a group of order 72 that is
isomorphic to K ×K, just as required. Now define

h := (1, 4)(2, 5)(3, 6).

This is an element of order 2 and so generates Sym(2), as required. We claim that the group
G = �B, h� is isomorphic to H �K.
(1) Observe first that h normalizes B: take g ∈ B and δ ∈ Δ. Consider δh

−1gh - observe

that δh
−1 �∈ Δ and so (δh

−1
)g �∈ Δ, and so δh

−1gh = ((δh
−1
)g)h ∈ Δ. We conclude that

h−1gh ∈ B and we are done.
(2) Now by (E4.15) we conclude that HB is a group and it must be equal to G. Note that,

since H ∩ B is clearly trivial, (E4.11) implies that G ∼= B �H.
(3) Finally observe that the action by conjugation of �h� on B is isomorphic to the action

by conjugation of H on K given at (5): Let (g1, g2) ∈ B and observe that, for i ∈ Ω,

ih
−1(g1,g2)h = (i+ 3)(g1,g2)h = (i+ 3)(g1,g2) + 3 = i(g2,g1).

We perform all additions modulo 6 here; the last equality requires that we identify 1
with 4, 2 with 5 and 3 with 6. The assertion follows.

22The definition of wreath product given here is sometimes called the unrestricted wreath product to distinguish it from a
similar construction known as the restricted wreath product. To obtain this second construction, one observes first that the
group B is in fact the direct product

�
i∈Ω

K; now one replaces B by the direct sum
�
i∈Ω

K. The group H acts on this group

just as before, and one can construct a semidirect product just as before. Of course if Ω is finite, then these two definitions
yield the same group so there is no ambiguity in this case. (And this is the only case that we shall consider from here on.)



FINITE PERMUTATION GROUPS AND FINITE CLASSICAL GROUPS 27

To conclude, let us consider the nature of the action of G ∼= Sym(3) � Sym(2) on Ω. It
is an easy matter to see that the action is transitive. The action is clearly not primitive,
however, since one can define a G-congruence as follows:

(6) i ∼ j ⇐⇒ i, j ≤ 3 or i, j > 3.

The blocks for this G-congruence are {1, 2, 3} and {4, 5, 6, }.
(E5.9)Prove that the group G in Example 17 is equal to

{g ∈ Sym(6) | i ∼ j =⇒ ig ∼ jg},
where ∼ is the G-congruence defined at (6).

(E5.10)Find a copy of Sym(2) � Sym(3) inside Sym(6). Describe its action on [1, 6].

As the previous example suggests, wreath products have a close connection to imprimitivity. Suppose
that, in addition to the action of H on Δ = {1, . . . , �}, the group K acts on some set Λ. Consider the
following function:

ϕ : K �H × (Λ×Δ)→ Λ×Δ,

((λ, i), (a1, . . . , a�)h) �→ (λ, i)(a1,...,a�)h := (λai , ih).

Let us check that ϕ is an action:23

(1) Clearly (λ, i)(1,...,1)1 = (λ, i) as required.
(2) Now let (a1, . . . , an)g and (c1, . . . , cn)h be elements in K �H. Then

�
(λ, i)(a1,...,an)g

�(c1,...,c�)h
= (λai , ig)(c1,...,cn)h = (λaicig , igh).

On the other hand

(λ, i)(a1,...,a�)g(c1,...,cn)h = (λ, i)(a1c1g ,...,anc�g )gh = (λaicig , igh)

as required.

Lemma 5.5. If H acts faithfully on Δ and K acts faithfully on Λ, then K �H acts faithfully on Λ×Δ.

Proof. Suppose that (a1, . . . , an)g ∈ K �H fixes every point (λ, i) ∈ Λ×Δ. Then ig = i for all i ∈ Δ and,
since H acts on Δ faithfully, we conclude that g = 1. In addition λai = λ for all λ ∈ Λ and, since K acts
faithfully on Λ we conclude that ai = 1. We are done. �

(E5.11)Prove the converse to this lemma: If A �G acts faithfully on Λ×Ω, then G acts faithfully

on Ω and A acts faithfully on Λ.

Define an equivalence relation on Λ×Δ as follows:

(λ, i) ∼ (λ�, i�)⇐⇒ i = i�.

Lemma 5.6. ∼ is a K �H-congruence. In particular, provided |Λ|, |Ω| > 1, the action of K �H on Λ×Δ
is imprimitive.

23Note that in the preceding definition, and in what follows, my notation for a semidirect product has changed somewhat.
Recall that K �H = B �H, where B ∼= K ×K × · · · ×K� �� �

�

. I choose to regard B and H as subgroups of K �H (i.e. using the

internal direct product. In particular K �H = H.B, where H.B denotes the product set {hb | b ∈ B, h ∈ H}. This much we
have seen before. However, it is quite clear that K �H is also equal to B.H and, since B∩H = {1}, I can write every element
g of K � H in a unique way as b.h where b ∈ B and h ∈ H. This is approach I use in the above discussion of the wreath
product. Note that the two representations - B.H or H.B - yield slightly different forms for the associated multiplication:

h1b1h2b2 = h1h2(h
−1
2 b1h2)b2 = (h1h2)(b

h2
1 b2)

b1h1b2h2 = b1(h1b2h
−1
1 )h1h2 = (b1b

h−1
1

2 )(h1h2).
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Proof. Take two congruent elements in Λ × Δ: (λ, i) and (λ�, i). Then (λ, i)(a1,...,an)g = (λai , ig) and
(λ�, i)(a1,...,an)g = (λ�ai , ig). Since the second entry of both pairs is equal to ig, we conclude that

(λ, i)(a1,...,an)g ∼ (λ�, i)(a1,...,an)g

as required. �
It turns out that all faithful imprimitive actions lie in a subgroup of the given form. (You should compare

this proposition to (E4.25).)

Proposition 5.7. Let Ω be a finite set of order n, and let ∼ be an equivalence relation on Ω with � > 1
equivalence classes all of size k := n

�
> 1.

(1) ∼ is a G-congruence for a unique subgroup G of Sym(Ω) that is isomorphic to Sym(k) � Sym(�);
(2) if ∼ is a J-congruence for some group J ≤ Sym(Ω), then J ≤ G.

Proof. Let Λ be a set of size k, and let Δ be a set of size �. Clearly Sym(Λ) (resp. Sym(Δ)) act faithfully
on Λ (resp. Δ) and so, by the previous two lemmas, Sym(Λ) � Sym(Δ) acts faithfully and imprimitively
on Λ×Δ with � equivalence classes, each of order k.
We can choose a bijection between Ω and Λ × Δ that maps ∼-equivalence classes to sets of form

{(λ, i) | λ ∈ Λ} (where i is fixed). This yields an injective homomorphism Sym(Λ) � Sym(Δ) → Sym(Ω),
as required. Write G for the image of this homomorphism.
To complete the proof we must show that if ∼ is a J-congruence for some group J ≤ Sym(Ω), then J is

a subgroup of G (this will yield (ii) as well as the uniqueness part of (i)). We maintain the identification of
Ω with Λ×Δ and we let J ≤ Sym(Ω) be a group for which ∼ is a J-congruence. Suppose that j ∈ J , let
(λ, i) ∈ Ω and write (λ, i)j = (λ�, i�). Since ∼ is a J-congruence, the choice of λ does not affect the value
of i�, in other words h defines a permutation g ∈ Sym(Δ) such that i� = ig for all i ∈ Δ. Now, for fixed i,
j defines a permutation ai ∈ Sym(Λ) for which λ� = λai . In other words

(λ, i)j = (λai , ig) = (λ, i)(a1,...,an)g

where (a1, . . . , an)g ∈ K �H. Thus J ≤ K �H and the result follows. �
The previous lemma can be expressed in categorical language – the following exercise explores this idea.

(E5.12)Our category is called ImprimTrans
Objects: Our objects are pairs (Ω,∼) where Ω is a finite set and ∼ is an equivalence relation

for which all equivalence classes have the same size.
Arrows: An arrow (Ω,∼) → (Ω�,∼�) is a function f : Ω → Ω� such that x ∼ y =⇒ f(x) ∼� f(y).

(1) Prove that ImprimTrans is a category.
(2) Prove that if X is an object in ImprimTrans, then Aut(X) ∼= Sym(Λ) � Sym(Δ) for some

finite sets Λ and Δ.
(3) Prove that if G acts on X = (Ω,∼) as an object from ImprimTrans, then ∼ is a G-

congruence, and conversely.
(4) Consider an alternative category – called Imprim in which we drop the condition that equiv-

alence classes all have the same size. What would Aut(X) look like in this case?

The next proposition is a refinement of Proposition 4.12, making use of Proposition 5.7.

Proposition 5.8. Let H ≤ Sym(Ω) where |Ω| < ∞. One of the following holds:

(1) H is intransitive and H ≤ Sym(k)× Sym(n− k) for some 1 < k < n;
(2) H is transitive and imprimitive and H ≤ Sym(k) � Sym(�) for some 1 < k, l < n with n = kl;
(3) H is primitive.

Proof. We apply Proposition 4.12 to H. If H satisfies (1) of that proposition, then (1) of this proposition
holds and we are done. Assume that H satisfies (2) of that proposition, i.e. that H acts transitively on Ω.
If H is imprimitive, then (E5.5) implies that the associated blocks all have equal size, and we can apply

Proposition 5.7, and the result follows immediately. �
Proposition 5.8 implies that, to understand the subgroup structure of Sym(n), we need to understand

the finite primitive actions.
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(E5.13)Let H be a primitive subgroup of Sym(n). Prove that
(1) if H contains a transposition, then H = Sym(n).
(2) if H contains a 3-cycle, then H contains Alt(n).24

(E5.14)Let Ω be a finite set of order n, and let X = (Ω,∼) (resp. Y = (Ω,∼�) be an object from
ImprimTrans. Assume that neither ∼ nor ∼� are trivial. Let H = Aut(X) (resp. K = Aut(Y ))
be subgroups of Sym(n).
(1) Use the result of the previous exercise to prove that H is maximal.
(2) Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does

Sym(n) contain?
(3) Describe the intersection of H and Alt(n).

24This is a famous result of Jordan. Its proof is a little tricky.


