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Figure 3. The product action.

6. The product action

Wreath products have another ‘natural’ action which we discuss here. As we shall see this action is often
primitive.
LetH andK be groups acting on sets Δ and Γ respectively. Consider the wreath productK �ΔH = B�H

where B = KΔ. Let Ω := ΓΔ, the set of functions from Δ to Γ. Define a function

ϕ : (K �Δ H)× Ω → Ω, ((b, g), α) �→ α(b,g)

where

α(b,g) : Δ → Γ, δ �→ (δg
−1

α)(δ
g−1

)b.

This definition is rather opaque! So let us consider the stituation where Δ is finite and we can identify it
with the set {1, . . . , �}. Now we can think of B as a direct product of � copies of K, and our definition of
α(b,g) becomes

α(b,g) : Δ → Γ, i �→ (ig
−1

α)big−1 .

Now Figure 3 demonstrates what is going on – it turns out that the definition is rather natural.
We have still to check that the definition is really an action - to avoid confusion, I will do this only for

the case where Δ is finite (so Δ can be taken to be {1, . . . , �}). Let (b, g), (b�, g�) ∈ K �Δ H and i ∈ Δ:

• iα(1,...,1,1)1 = (i1α)1 = iα as required.
• Observe that

i(α(a1,...,a�)g)(c1,...,c�)h = (ih
−1

α(a1,...,an)g)cih−1

= (ih
−1g−1

α)aig−1 c
ih

−1

= (i(gh)
−1

α)
(acg

−1
)
i(gh)

−1

= iα(a1,...,a�)(c1,...,c�)
g−1

gh

= iα(a1,...,a�)g(c1,...,c�)h.

Thus K �Δ H acts on Ω = ΓΔ, and this action is called the product action of the wreath product on Ω.

Example 18. Recall the group G = Sym(3) � Sym(2) that we studied in Example 17.
In that example we examined a subgroup of Sym(6) that was isomorphic to G and acted
imprimitively on [1, 6]. In contrast here we will find a subgroup of Sym(9) that is isomorphic
to G.
Recall that G = B � Sym(2) where B ∼= Sym(3)× Sym(3). Thus we write

G = {(k1, k2)h | k1, k2 ∈ Sym(3), h ∈ Sym(2)}
and observe that an element (k1, k2)h lies in B if and only if h = 1. Similarly (k1, k2)h �∈ B
if and only if h = g, the unique non-trivial element of Sym(2).
Set Γ := {1, 2, 3} and define

Ω := {(α1, α2) | α1, α2 ∈ Γ}.
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Observe that Ω is equal to the set of functions {1, 2} → {1, 2, 3}, a set of cardinality 9. Now
the product action of G on Ω is given by

(α1, α2)
(k1,k2)1 = (αk1

1 , αk2
2 ) and (α1, α2)

(k1,k2)g = (αk2
2 , αk1

1 ).

The first of these corresponds to elements of B and it is easy enough to see that B acts
transitively on Ω thus, in particular, so does G. Let us consider whether or not G acts
primitively or not. Let us calculate the stabilizer of the point (1, 1):

G(1,1) = {(k1, k2)h | k1, k2 ∈ �(2, 3)�, h ∈ Sym(2)}.
Now consider the action of G(1,1) on Ω. It is easy enough to check that the orbits of this
action are

{(1, 1)},
{(1, 2), (1, 3), (2, 1)(3, 1)} and

{(2, 2), (2, 3), (3, 3), (3, 2)}.
Since G is transitive, (E5.5) implies that, if G is imprimitive, then there is only one possible
non-trivial G-congruence and it has the property that all blocks have size 3. On the other
hand (E5.6) implies that the block containing (1, 1) is a union of orbits of the stabilizer
G(1,1). We conclude that G acts primitively on Ω.

(E6.1)Consider the product action of the group Sym(2) �Sym(3) (on a set of size 8). Is this action

primitive?

Lemma 6.1. Let H and K be groups acting on sets Δ and Γ respectively, where |Γ| ≥ 2. Then the product
action of K �Δ H on Ω := ΓΔ is faithful if and only if the respective actions of H and K on Δ and Γ are
faithful.

Proof. Suppose that the respective actions of H and K on Δ and Γ are faithful, and suppose that for some
(b, g) ∈ K �Δ H, α(b,g) = α for all α : Δ → Γ. This implies that, for all δ ∈ Δ,

(δg
−1

α)(δ
g−1

)b = δα.

Write σ for δg
−1

and observe that then
(σα)(σ)b) = δα.

But now if σ and δ are distinct for some δ, then, since α can be any function from Δ → Γ and |Γ| ≥ 2, we
have a contradiction. We conclude that σ = δ for all δ and, since H acts faithfully on Δ, this implies that
g = 1.
Now since δg

−1
α can be any element of Γ, and K is faithful on Γ, we conclude that (δ)b = 1 for all δ

and the result follows.

(E6.2)Prove the converse.

�
Lemma 6.2. Suppose that G is a primitive subgroup of Sym(Ω). Then G is regular if and only if, for
some (and hence all) ω ∈ Ω, Gα is a proper subgroup of NG(Gα).

Proof. It is convenient to assume that |Ω| > 2 so that, by Lemma 5.3, G is transitive and Gω is maximal
in G. (When |Ω| = 2 the result is obvious.)
Fix ω ∈ Ω and observe that, since G is transitive, G is regular if and only if Gω is trivial. Thus if G is

regular, then NG(Gα) = G and Gα is a proper subgroup of NG(Gα), as required.
On the other hand if G is not regular, then Gω contains a non-trivial element g and, in particular, Gω is

not normal (since, otherwise, g would fix every element of Ω which is impossible). Thus GΩ ≤ NG(Gα) < G.
Now observe that, since G is primitive, Gα is maximal in G, and we conclude that GΩ = NG(Gα), as
required. �
Proposition 6.3. Suppose that H and K are nontrivial groups acting on the sets Δ and Γ respectively.
Then the wreath product K �Δ H is primitive in the product action on Ω := ΓΔ if and only if:
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(1) K acts primitively but not regularly on Γ; and
(2) Δ is finite and H acts transitively on Δ.

Proof. Suppose that (1) and (2) hold, and, without loss of generality, let Δ = {1, . . . , �}. It is clear that
the base group B = H × · · · ×H� �� �

�

acts transitively on Ω, so the same is true of W .

Fix γ ∈ Γ. We take L to be the stabilizer of the constant element

φγ : Δ → Γ, δ → γ.

Observe that
L = {(b, h) ∈ W | bi ∈ Kγ for all i}.

By Lemma 5.3 it is sufficient to show that L is maximal. Thus suppose that L < M ≤ W ; we will show
that M = W .
Define

H0 := {(1, h) | h ∈ h}.
Since W = BH0 = BL we have M = (M ∩B)L. Therefore M ∩B > L∩B and so, for some i0, there exists
(b, 1) ∈ M ∩B with bi0 �∈ Kγ. Since K is primitive and not regular, Lemma 6.2 implies that Kγ = NK(Kγ)
and so, for some u ∈ Kγ, we have (bi0)

−1u(bi0) �∈ Kγ. Consider the element

c := (1, . . . , 1, u, 1, . . . , 1) ∈ B

where the non-identity element is in the i0-th position.
Define d := [b, c] ∈ M\L and observe that di0 = [bi0 , u] ∈ K\Kγ and di = 1 for all i �= i0 Now, since

(b, 1), (c, 1) ∈ M we conclude that (d, 1) ∈ M\L.
Since K is primitive, Kγ is maximal, and so K = �Kγ, di0�; therefore M contains the subgroup

B(i0) := {(b, 1) ∈ B | bi = 1 for all i �= i0}.
Since H0 ≤ M and H is transitive on Δ we conclude that B(i) ≤ L for all i ∈ Δ. Since Δ is finite we
conclude that B =

�
i∈Δ B(i) ≤ M . Thus M = BH0 = W as required.

(E6.3)Prove the converse.

�
(E6.4)Let p be a prime, � > 1 any positive integer. Let

Cp = �(1, 2, 3, . . . , p)�
be a cyclic subgroup of order p in Sym(p), and consider the wreath product G = Cp � Sym(�) in the

product action on a set of size p�. Prove that the action is transitive and imprimitive; calculate

the order of the blocks of imprimitivity preserved by G; describe the setwise stabilizer of a block of

imprimitivity.

The next result is analogous to Proposition 5.7, and deals with groups ‘preserving a product structure’.
Specifically a product structure on a set Ω is a bijection θ : Ω → ΓΔ where Γ and Δ are sets. If a group G
acts on Ω, then this identification is a G-product structure if, for all g ∈ G, there exists h ∈ Sym(Δ) such
that,

(7) for all ω1, ω2 ∈ Ω and all δ ∈ Δ, (δh)ω1 = (δh)ω2 =⇒ (δ)ωg
1 = (δ)ωg

2 .

(To ease notation here and below, I identify Ω and θ(Ω), thereby thinking of ω ∈ Ω as a function Δ → Γ.)
We will only consider product structures on finite sets Ω. In particular if |Ω| = n < ∞, then we call the
product structure non-trivial if 1 < |Γ|, |Δ| < n. If θ : Ω → ΓΔ is a product structure, and a group G acts
on the set Ω, then we say that G preserves the product structure θ if θ is a G-product structure.

Proposition 6.4. Let Ω be a finite set of order n. Suppose that θ : Ω → ΓΔ is a product structure, with
|Γ| = k and |Δ| = �.

(1) θ is a G-product structure for a unique subgroup G of Sym(Ω) that is isomorphic to Sym(k) �Δ
Sym(�);

(2) if θ is a H-product structure for some group H ≤ Sym(Ω), then H ≤ G.
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Proof. Since Sym(Γ) and Sym(Δ) act faithfully on Γ and Δ respectively, Lemma 6.1 implies that G :=
Sym(Γ) � Sym(Δ) acts faithfully on ΓΔ in the product action. This action preserves the product structure
associated with ΓΔ since, for any g = (f1, . . . , f�)h in G, the definition of the product action implies that

(δh
−1

)ω1 = (δh
−1

)ω2 =⇒ (δ)ωg
1 = (δ)ωg

2 .

We obtain an embedding of G = Sym(k) �Δ Sym(�) in Sym(Ω) = Sym(ΓΔ), as required.
To complete the proof, we must show that if θ is a J-product structure for some group J ≤ Sym[Ω),

then J is a subgroup of G (this will yield (ii) as well as the uniqueness part of (i)). Suppose that j ∈ J
and let h be the associated permutation of Sym(Ω) satisfying (7).
Then, for each δ ∈ Δ, (7) implies that we have an associated element gδ ∈ Sym(Γ) such that, for any

ω ∈ Ω and δ ∈ Δ,
(δ)ωj = ((δh)ω)gδ .

In other words, for all ω ∈ Ω,
ωj = ω(g1,...,g�)h

−1

where (g1, . . . , g�)h ∈ G and we use the product action of G on Ω. We are done. �
As usual we have a categorical restatement, as follows.

(E6.5)Our category is called ProductStruct
Objects: An object is a pair (Ω, θ) where Ω is a finite set and θ : Ω → ΓΔ is a product structure.

Equivalently an object is a direct product Γ× · · · × Γ� �� �
�

where Γ is a finite set of size k.

Arrows: An arrow is a pair (g, h) where g : Ω → Ω and h : Δ → Δ are functions, and we
require that (7) holds.
(1) Prove that ProductStruct is a category.
(2) Prove that if X is an object in ProductStruct, then Aut(X) ∼= Sym(k) � Sym(�).
(3) Prove that if G acts on X = Γ� as an object from ProductStruct, then ∼ is a G-product

structure, and conversely.

The next proposition is a refinement of Proposition 5.8, making use of the previous two propositions.

Proposition 6.5. Let H ≤ Sym(Ω) where |Ω| < ∞. One of the following holds:

(1) H is intransitive and H ≤ Sym(k)× Sym(n− k) for some 1 < k < n;
(2) H is transitive and imprimitive and H ≤ Sym(k) � Sym(�) for some 1 < k, l < n with n = kl;
(3) H is primitive, preserves a non-trivial product structure, and H ≤ Sym(k) � Sym(�) for some

1 < l < n, 2 < k < n with n = kl;
(4) H is primitive and does not preserve a non-trivial product structure.25

Proof. We apply Proposition 5.8 and are able to assume that H is primitive. If θ : Ω → ΓΔ is a H-product
structure, then Proposition 6.4 implies that H is a subgroup of a group Sym(k) � Sym(�) inside Sym(n),
with n = kl; moreover, since the product structure is non-trivial, we have 1 < l < n, 1 < k < n with
n = kl. If k = 2, then Sym(2) acts regularly on the associated set of order 2 and Proposition 6.3 implies
that Sym(2) � Sym(l) is imprimitive, which is a contradiction. The result follows. �

(E6.6)Let Ω be a finite set of order n and let X = (Ω, θ) (resp. Y = (Ω, θ�)) be an object from

ProductStruct. Let H = Aut(X) (resp. K = Aut(Y )) be subgroups of Sym(n). When is H

maximal? Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H

does Sym(n) contain? Describe the intersection of H and Alt(n).

To classify the subgroups of Sym(Ω), then, we need to study those primitive groups that do not preserve
a product structure. To do this we change our approach slightly, and turn our attention to the socle of a
permutation group.

25Peter Cameron uses the notation basic primitive group to refer to a permutation group that is primitive and does not
preserve a non-trivial product structure.


