

Figure 3. The product action.

6. The product action

Wreath products have another 'natural' action which we discuss here. As we shall see this action is often primitive.

Let H and K be groups acting on sets Δ and Γ respectively. Consider the wreath product $K 2_{\Delta} H=B \rtimes H$ where $B=K^{\Delta}$. Let $\Omega:=\Gamma^{\Delta}$, the set of functions from Δ to Γ. Define a function

$$
\varphi:\left(K \imath_{\Delta} H\right) \times \Omega \rightarrow \Omega,((b, g), \alpha) \mapsto \alpha^{(b, g)}
$$

where

$$
\alpha^{(b, g)}: \Delta \rightarrow \Gamma, \delta \mapsto\left(\delta^{g^{-1}} \alpha\right)^{\left(\delta^{g^{-1}}\right) b} .
$$

This definition is rather opaque! So let us consider the stituation where Δ is finite and we can identify it with the set $\{1, \ldots, \ell\}$. Now we can think of B as a direct product of ℓ copies of K, and our definition of $\alpha^{(b, g)}$ becomes

$$
\alpha^{(b, g)}: \Delta \rightarrow \Gamma, i \mapsto\left(i^{g^{-1}} \alpha\right)^{b}{ }_{i g^{-1}} .
$$

Now Figure 3 demonstrates what is going on - it turns out that the definition is rather natural.
We have still to check that the definition is really an action - to avoid confusion, I will do this only for the case where Δ is finite (so Δ can be taken to be $\{1, \ldots, \ell\}$). Let $(b, g),\left(b^{\prime}, g^{\prime}\right) \in K 2_{\Delta} H$ and $i \in \Delta$:

- $i \alpha^{(1, \ldots, 1,1) 1}=\left(i^{1} \alpha\right)^{1}=i \alpha$ as required.
- Observe that

$$
\begin{aligned}
i\left(\alpha^{\left(a_{1}, \ldots, a_{\ell}\right) g}\right)^{\left(c_{1}, \ldots, c_{\ell}\right) h} & =\left(i^{h^{-1}} \alpha^{\left(a_{1}, \ldots, a_{n}\right) g}\right)^{c_{i}{ }_{i}-1} \\
& =\left(i^{h^{-1} g^{-1}} \alpha\right)^{a}{ }_{i} g^{-1} c_{i{ }^{h}}{ }^{-1} \\
& =\left(i^{(g h)^{-1}} \alpha\right)^{\left(a c^{g^{-1}}\right)_{i}(g h)^{-1}} \\
& =i \alpha^{\left(a_{1}, \ldots, a_{\ell}\right)\left(c_{1}, \ldots, c_{\ell}\right)^{g^{-1}}{ }_{g h}} \\
& =i \alpha^{\left(a_{1}, \ldots, a_{\ell}\right) g\left(c_{1}, \ldots, c_{\ell}\right) h} .
\end{aligned}
$$

Thus $K 2_{\Delta} H$ acts on $\Omega=\Gamma^{\Delta}$, and this action is called the product action of the wreath product on Ω.
Example 18. Recall the group $G=\operatorname{Sym}(3)$ 亿 $\operatorname{Sym}(2)$ that we studied in Example 17. In that example we examined a subgroup of $\operatorname{Sym}(6)$ that was isomorphic to G and acted imprimitively on $[1,6]$. In contrast here we will find a subgroup of $\operatorname{Sym}(9)$ that is isomorphic to G.

Recall that $G=B \rtimes \operatorname{Sym}(2)$ where $B \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$. Thus we write

$$
G=\left\{\left(k_{1}, k_{2}\right) h \mid k_{1}, k_{2} \in \operatorname{Sym}(3), h \in \operatorname{Sym}(2)\right\}
$$

and observe that an element $\left(k_{1}, k_{2}\right) h$ lies in B if and only if $h=1$. Similarly $\left(k_{1}, k_{2}\right) h \notin B$ if and only if $h=g$, the unique non-trivial element of $\operatorname{Sym}(2)$.

Set $\Gamma:=\{1,2,3\}$ and define

$$
\Omega:=\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1}, \alpha_{2} \in \Gamma\right\}
$$

Observe that Ω is equal to the set of functions $\{1,2\} \rightarrow\{1,2,3\}$, a set of cardinality 9 . Now the product action of G on Ω is given by

$$
\left(\alpha_{1}, \alpha_{2}\right)^{\left(k_{1}, k_{2}\right) 1}=\left(\alpha_{1}^{k_{1}}, \alpha_{2}^{k_{2}}\right) \text { and }\left(\alpha_{1}, \alpha_{2}\right)^{\left(k_{1}, k_{2}\right) g}=\left(\alpha_{2}^{k_{2}}, \alpha_{1}^{k_{1}}\right)
$$

The first of these corresponds to elements of B and it is easy enough to see that B acts transitively on Ω thus, in particular, so does G. Let us consider whether or not G acts primitively or not. Let us calculate the stabilizer of the point $(1,1)$:

$$
G_{(1,1)}=\left\{\left(k_{1}, k_{2}\right) h \mid k_{1}, k_{2} \in\langle(2,3)\rangle, h \in \operatorname{Sym}(2)\right\}
$$

Now consider the action of $G_{(1,1)}$ on Ω. It is easy enough to check that the orbits of this action are

$$
\begin{aligned}
& \{(1,1)\} \\
& \{(1,2),(1,3),(2,1)(3,1)\} \text { and } \\
& \{(2,2),(2,3),(3,3),(3,2)\}
\end{aligned}
$$

Since G is transitive, (E5.5) implies that, if G is imprimitive, then there is only one possible non-trivial G-congruence and it has the property that all blocks have size 3 . On the other hand (E5.6) implies that the block containing $(1,1)$ is a union of orbits of the stabilizer $G_{(1,1)}$. We conclude that G acts primitively on Ω.
(E6.1) Consider the product action of the group $\operatorname{Sym}(2) 2 \operatorname{Sym}(3)$ (on a set of size 8). Is this action primitive?
Lemma 6.1. Let H and K be groups acting on sets Δ and Γ respectively, where $|\Gamma| \geq 2$. Then the product action of $K 2_{\Delta} H$ on $\Omega:=\Gamma^{\Delta}$ is faithful if and only if the respective actions of H and K on Δ and Γ are faithful.

Proof. Suppose that the respective actions of H and K on Δ and Γ are faithful, and suppose that for some $(b, g) \in K \imath_{\Delta} H, \alpha^{(b, g)}=\alpha$ for all $\alpha: \Delta \rightarrow \Gamma$. This implies that, for all $\delta \in \Delta$,

$$
\left(\delta^{g^{-1}} \alpha\right)^{\left(\delta^{g^{-1}}\right) b}=\delta \alpha
$$

Write σ for $\delta^{g^{-1}}$ and observe that then

$$
(\sigma \alpha)^{(\sigma) b)}=\delta \alpha
$$

But now if σ and δ are distinct for some δ, then, since α can be any function from $\Delta \rightarrow \Gamma$ and $|\Gamma| \geq 2$, we have a contradiction. We conclude that $\sigma=\delta$ for all δ and, since H acts faithfully on Δ, this implies that $g=1$.

Now since $\delta^{g^{-1}} \alpha$ can be any element of Γ, and K is faithful on Γ, we conclude that $(\delta) b=1$ for all δ and the result follows.
(E6.2)Prove the converse.

Lemma 6.2. Suppose that G is a primitive subgroup of $\operatorname{Sym}(\Omega)$. Then G is regular if and only if, for some (and hence all) $\omega \in \Omega, G_{\alpha}$ is a proper subgroup of $N_{G}\left(G_{\alpha}\right)$.
Proof. It is convenient to assume that $|\Omega|>2$ so that, by Lemma 5.3, G is transitive and G_{ω} is maximal in G. (When $|\Omega|=2$ the result is obvious.)

Fix $\omega \in \Omega$ and observe that, since G is transitive, G is regular if and only if G_{ω} is trivial. Thus if G is regular, then $N_{G}\left(G_{\alpha}\right)=G$ and G_{α} is a proper subgroup of $N_{G}\left(G_{\alpha}\right)$, as required.

On the other hand if G is not regular, then G_{ω} contains a non-trivial element g and, in particular, G_{ω} is not normal (since, otherwise, g would fix every element of Ω which is impossible). Thus $G_{\Omega} \leq N_{G}\left(G_{\alpha}\right)<G$. Now observe that, since G is primitive, G_{α} is maximal in G, and we conclude that $G_{\Omega}=N_{G}\left(G_{\alpha}\right)$, as required.

Proposition 6.3. Suppose that H and K are nontrivial groups acting on the sets Δ and Γ respectively. Then the wreath product $K 2_{\Delta} H$ is primitive in the product action on $\Omega:=\Gamma^{\Delta}$ if and only if:
(1) K acts primitively but not regularly on Γ; and
(2) Δ is finite and H acts transitively on Δ.

Proof. Suppose that (1) and (2) hold, and, without loss of generality, let $\Delta=\{1, \ldots, \ell\}$. It is clear that the base group $B=\underbrace{H \times \cdots \times H}_{\ell}$ acts transitively on Ω, so the same is true of W.

Fix $\gamma \in \Gamma$. We take L to be the stabilizer of the constant element

$$
\phi_{\gamma}: \Delta \rightarrow \Gamma, \delta \rightarrow \gamma .
$$

Observe that

$$
L=\left\{(b, h) \in W \mid b_{i} \in K_{\gamma} \text { for all } i\right\}
$$

By Lemma 5.3 it is sufficient to show that L is maximal. Thus suppose that $L<M \leq W$; we will show that $M=W$.

Define

$$
H_{0}:=\{(1, h) \mid h \in h\} .
$$

Since $W=B H_{0}=B L$ we have $M=(M \cap B) L$. Therefore $M \cap B>L \cap B$ and so, for some i_{0}, there exists $(b, 1) \in M \cap B$ with $b_{i_{0}} \notin K_{\gamma}$. Since K is primitive and not regular, Lemma 6.2 implies that $K_{\gamma}=N_{K}\left(K_{\gamma}\right)$ and so, for some $u \in K_{\gamma}$, we have $\left(b_{i_{0}}\right)^{-1} u\left(b_{i_{0}}\right) \notin K_{\gamma}$. Consider the element

$$
c:=(1, \ldots, 1, u, 1, \ldots, 1) \in B
$$

where the non-identity element is in the i_{0}-th position.
Define $d:=[b, c] \in M \backslash L$ and observe that $d_{i_{0}}=\left[b_{i_{0}}, u\right] \in K \backslash K_{\gamma}$ and $d_{i}=1$ for all $i \neq i_{0}$ Now, since $(b, 1),(c, 1) \in M$ we conclude that $(d, 1) \in M \backslash L$.

Since K is primitive, K_{γ} is maximal, and so $K=\left\langle K_{\gamma}, d_{i_{0}}\right\rangle$; therefore M contains the subgroup

$$
B\left(i_{0}\right):=\left\{(b, 1) \in B \mid b_{i}=1 \text { for all } i \neq i_{0}\right\}
$$

Since $H_{0} \leq M$ and H is transitive on Δ we conclude that $B(i) \leq L$ for all $i \in \Delta$. Since Δ is finite we conclude that $B=\prod_{i \in \Delta} B(i) \leq M$. Thus $M=B H_{0}=W$ as required.
(E6.3)Prove the converse.
(E6.4)Let p be a prime, $\ell>1$ any positive integer. Let

$$
C_{p}=\langle(1,2,3, \ldots, p)\rangle
$$

be a cyclic subgroup of order p in $\operatorname{Sym}(p)$, and consider the wreath product $G=C_{p} 2 \operatorname{Sym}(\ell)$ in the product action on a set of size p^{ℓ}. Prove that the action is transitive and imprimitive; calculate the order of the blocks of imprimitivity preserved by G; describe the setwise stabilizer of a block of imprimitivity.
The next result is analogous to Proposition 5.7, and deals with groups 'preserving a product structure'. Specifically a product structure on a set Ω is a bijection $\theta: \Omega \rightarrow \Gamma^{\Delta}$ where Γ and Δ are sets. If a group G acts on Ω, then this identification is a G-product structure if, for all $g \in G$, there exists $h \in \operatorname{Sym}(\Delta)$ such that,

$$
\begin{equation*}
\text { for all } \omega_{1}, \omega_{2} \in \Omega \text { and all } \delta \in \Delta,\left(\delta^{h}\right) \omega_{1}=\left(\delta^{h}\right) \omega_{2} \Longrightarrow(\delta) \omega_{1}^{g}=(\delta) \omega_{2}^{g} \tag{7}
\end{equation*}
$$

(To ease notation here and below, I identify Ω and $\theta(\Omega)$, thereby thinking of $\omega \in \Omega$ as a function $\Delta \rightarrow \Gamma$.) We will only consider product structures on finite sets Ω. In particular if $|\Omega|=n<\infty$, then we call the product structure non-trivial if $1<|\Gamma|,|\Delta|<n$. If $\theta: \Omega \rightarrow \Gamma^{\Delta}$ is a product structure, and a group G acts on the set Ω, then we say that G preserves the product structure θ if θ is a G-product structure.
Proposition 6.4. Let Ω be a finite set of order n. Suppose that $\theta: \Omega \rightarrow \Gamma^{\Delta}$ is a product structure, with $|\Gamma|=k$ and $|\Delta|=\ell$.
(1) θ is a G-product structure for a unique subgroup G of $\operatorname{Sym}(\Omega)$ that is isomorphic to $\operatorname{Sym}(k) 2_{\Delta}$ $\operatorname{Sym}(\ell)$;
(2) if θ is a H-product structure for some group $H \leq \operatorname{Sym}(\Omega)$, then $H \leq G$.

Proof. Since $\operatorname{Sym}(\Gamma)$ and $\operatorname{Sym}(\Delta)$ act faithfully on Γ and Δ respectively, Lemma 6.1 implies that $G:=$ $\operatorname{Sym}(\Gamma) \imath \operatorname{Sym}(\Delta)$ acts faithfully on Γ^{Δ} in the product action. This action preserves the product structure associated with Γ^{Δ} since, for any $g=\left(f_{1}, \ldots, f_{\ell}\right) h$ in G, the definition of the product action implies that

$$
\left(\delta^{h^{-1}}\right) \omega_{1}=\left(\delta^{h^{-1}}\right) \omega_{2} \Longrightarrow(\delta) \omega_{1}^{g}=(\delta) \omega_{2}^{g}
$$

We obtain an embedding of $G=\operatorname{Sym}(k) \imath_{\Delta} \operatorname{Sym}(\ell)$ in $\operatorname{Sym}(\Omega)=\operatorname{Sym}\left(\Gamma^{\Delta}\right)$, as required.
To complete the proof, we must show that if θ is a J-product structure for some group $J \leq \operatorname{Sym}[\Omega)$, then J is a subgroup of G (this will yield (ii) as well as the uniqueness part of (i)). Suppose that $j \in J$ and let h be the associated permutation of $\operatorname{Sym}(\Omega)$ satisfying (7).

Then, for each $\delta \in \Delta,(7)$ implies that we have an associated element $g_{\delta} \in \operatorname{Sym}(\Gamma)$ such that, for any $\omega \in \Omega$ and $\delta \in \Delta$,

$$
(\delta) \omega^{j}=\left(\left(\delta^{h}\right) \omega\right)^{g_{\delta}} .
$$

In other words, for all $\omega \in \Omega$,

$$
\omega^{j}=\omega^{\left(g_{1}, \ldots, g_{\ell}\right) h^{-1}}
$$

where $\left(g_{1}, \ldots, g_{\ell}\right) h \in G$ and we use the product action of G on Ω. We are done.
As usual we have a categorical restatement, as follows.
(E6.5) Our category is called ProductStruct
Objects: An object is a pair (Ω, θ) where Ω is a finite set and $\theta: \Omega \rightarrow \Gamma^{\Delta}$ is a product structure. Equivalently an object is a direct product $\underbrace{\Gamma \times \cdots \times \Gamma}_{\ell}$ where Γ is a finite set of size k.

Arrows: An arrow is a pair (g, h) where $g: \Omega \rightarrow \Omega$ and $h: \Delta \rightarrow \Delta$ are functions, and we require that (7) holds.
(1) Prove that ProductStruct is a category.
(2) Prove that if X is an object in ProductStruct, then $\operatorname{Aut}(X) \cong \operatorname{Sym}(k) 2 \operatorname{Sym}(\ell)$.
(3) Prove that if G acts on $X=\Gamma^{\ell}$ as an object from ProductStruct, then \sim is a G-product structure, and conversely.
The next proposition is a refinement of Proposition 5.8, making use of the previous two propositions.
Proposition 6.5. Let $H \leq \operatorname{Sym}(\Omega)$ where $|\Omega|<\infty$. One of the following holds:
(1) H is intransitive and $H \leq \operatorname{Sym}(k) \times \operatorname{Sym}(n-k)$ for some $1<k<n$;
(2) H is transitive and imprimitive and $H \leq \operatorname{Sym}(k) \imath \operatorname{Sym}(\ell)$ for some $1<k, l<n$ with $n=k l$;
(3) H is primitive, preserves a non-trivial product structure, and $H \leq \operatorname{Sym}(k) \imath \operatorname{Sym}(\ell)$ for some $1<l<n, 2<k<n$ with $n=k^{l}$;
(4) H is primitive and does not preserve a non-trivial product structure. ${ }^{25}$

Proof. We apply Proposition 5.8 and are able to assume that H is primitive. If $\theta: \Omega \rightarrow \Gamma^{\Delta}$ is a H-product structure, then Proposition 6.4 implies that H is a subgroup of a group $\operatorname{Sym}(k)$ $2 \operatorname{Sym}(\ell)$ inside $\operatorname{Sym}(n)$, with $n=k^{l}$; moreover, since the product structure is non-trivial, we have $1<l<n, 1<k<n$ with $n=k^{l}$. If $k=2$, then $\operatorname{Sym}(2)$ acts regularly on the associated set of order 2 and Proposition 6.3 implies that $\operatorname{Sym}(2)$ $\operatorname{Sym}(l)$ is imprimitive, which is a contradiction. The result follows.
(E6.6)Let Ω be a finite set of order n and let $X=(\Omega, \theta)$ (resp. $Y=\left(\Omega, \theta^{\prime}\right)$) be an object from ProductStruct. Let $H=\operatorname{Aut}(X)$ (resp. $K=\operatorname{Aut}(Y)$) be subgroups of $\operatorname{Sym}(n)$. When is H maximal? Are H and K conjugate? How many conjugacy classes of subgroups isomorphic to H does $\operatorname{Sym}(n)$ contain? Describe the intersection of H and $\operatorname{Alt}(n)$.
To classify the subgroups of $\operatorname{Sym}(\Omega)$, then, we need to study those primitive groups that do not preserve a product structure. To do this we change our approach slightly, and turn our attention to the socle of a permutation group.

[^0]
[^0]: ${ }^{25}$ Peter Cameron uses the notation basic primitive group to refer to a permutation group that is primitive and does not preserve a non-trivial product structure.

