(E10.1)Check that \mathbb{H} is a division ring.

(E10.2) Show that Vandermonde's Theorem does not hold in \mathbb{H} .

(E10.3)Let k be finite of order n. How many primitive elements does k contain?

(E10.4*)Show that $X^2 + 1 \in \mathbb{F}_3[X]$ is irreducible, and compute the addition and multiplication tables for $\mathbb{F}_9 := \mathbb{F}_3[x]/\langle X^2 + 1 \rangle$.

(E10.5*)Show that $X^3 + X + 1 \in \mathbb{F}_2[X]$ is irreducible, and compute the addition and multiplication tables for $\mathbb{F}_8 = \mathbb{F}_2[x]/\langle X^3 + X + 1 \rangle$.

(E10.6)Fix a basis B of V. Any semilinear transformation on V is a composition of a linear transformation and a field automorphism of V with respect to B.

(E10.7) Use the previous exercise to prove that $\Gamma L_n(k) \cong \operatorname{GL}_n(k) \rtimes_{\phi} \operatorname{Aut}(k)$. Note that this implicitly (or explicitly) requires an appropriate homomorphism $\phi : \operatorname{Aut}(k) \to \operatorname{Aut}(\operatorname{GL}_n(k))$... Can you speculate about the structure of $\operatorname{Aut}(\operatorname{GL}_n(k))$ when k is finite?