11. PROJECTIVE SPACE

(E11.1) Show that $PG_2(2)$ and the Fano plane are the same incidence structure. (We would do better to write that " $PG_2(2)$ and the Fano plane are isomorphic as incidence structures", but we have not yet defined what we mean by isomorphism.)

(E11.2*) Show that, for any prime power q, $PG_2(q)$ is an abstract projective plane.

(E11.3)Prove (b).

(E11.4) Prove that $\lim_{q \to 1} {n \brack m}_q = {n \choose m}$.

(E11.5)Prove that

$$\begin{bmatrix} n \\ m \end{bmatrix}_q + q^{n-m+1} \begin{bmatrix} n \\ m-1 \end{bmatrix}_q = \begin{bmatrix} n+1 \\ m \end{bmatrix}_q.$$

(E11.6^{*})Prove that this action is well-defined, and that the action preserves the incidence relation for PG(V).

(E11.7) Prove that $\ker(\phi) = \{\alpha I \in \operatorname{GL}(V) \mid \alpha \in k\}.$

(E11.8) Prove that K is central in GL(V). Can you characterize those fields k and those vector spaces V for which K is central in $\Gamma L(V)$?

(E11.9^{*})Prove that

$$|\operatorname{PGL}_n(\mathbb{R}) : \operatorname{PSL}_n(\mathbb{R})| = \begin{cases} 1, & \text{if } n \text{ is odd;} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

 $(E11.10)V^*$ is a vector space over k of dimension n.

 $(E11.11)U \mapsto U^{\dagger}$ is a bijection between the subspaces of V and the subspaces of V^* .

(E11.12) $U_1 \leq U_2$ if and only if $U_1^{\dagger} \geq U_2^{\dagger}$. (E11.13) If $U \leq V$, then $\dim(U^{\dagger}) = n - \dim(U)$ and $\operatorname{pdim}(U^{\dagger}) = n - 2 - \operatorname{pdim}(U)$

(E11.14)Prove that $U \to U^{\dagger}$ is a weak automorphism of PG(V).

(E11.15*) Prove that, for $n \ge 3$, WAut(PG_n(q)) contains Aut(PG_n(q)) as an index 2 subgroup. Can you say any more about the structure of $WAut(PG_n(q))$?

(E11.16) $PG_{n-1}(q)$ is a thick abstract projective space.