(E7.1)Find the socle of D_{10} , A_4 , S_4 , $S_4 \times \mathbb{Z}$.

(E7.2)Give an example of a group that has no minimal normal subgroup.

(E7.3) If G is the direct product of a (possibly infinite) number of finite simple groups, then what is soc(G)?

(E7.4)Give a characterization of almost simple groups in terms of their socle.

(E7.5)Suppose that G is elementary abelian. How many minimal (resp. maximal) normal subgroups does G have?

(E7.6) Let V be an elementary-abelian p-group.

- (1) Let G be a group of automorphisms of V as an object from **Group**. Prove that G acts linearly on V, i.e. prove that G is a group of automorphisms of V as an object from $\mathbf{Vect}_{\mathbb{F}_p}$.
- (2) Let G be a group of automorphisms of V as an object from $\mathbf{Vect}_{\mathbb{F}_p}$. Prove that G is a group of automorphisms of V as an object from **Group**.
- (3) Conclude that $\operatorname{Aut}(V) = \operatorname{GL}(V)$, whether we consider it an object of **Group** or of $\operatorname{Vect}_{\mathbb{F}_p}$.
- (E7.7)Suppose that K is finite.
 - Prove that $\operatorname{soc}(\operatorname{AGL}_d(K)) \cong K^d$ and, moreover, that $\operatorname{soc}(\operatorname{AGL}_d(K))$ is a minimal normal subgroup of $\operatorname{AGL}_d(K)$.
 - Suppose that $\operatorname{soc}(\operatorname{AGL}_d(K) \leq G \leq \operatorname{AGL}_d(K)$. Under what conditions is $\operatorname{soc}(\operatorname{AGL}_d(K))$ a minimal normal subgroup of G?

(E7.8)Describe the structure of $AGL_1(p)$ for a prime p.

(E7.9) Suppose that G is a maximal primitive subgroup of Sym(n). Prove that G has a unique minimal normal subgroup (and so possibility (2) in Theorem 7.4 cannot occur).⁵

(E7.10) Suppose that K is a regular normal subgroup of G, a subgroup of Sym(n). Let H be the stabilizer of a point in the action on $\Omega := \{1, \ldots, n\}$. Then $G = KH, K \cap H = \{1\}$ and, in particular, G splits over K, i.e. $G = K \rtimes H$.

(E7.11) Let V be a vector space. Prove that

- $N \cap \operatorname{GL}(V) = \{1\}$, where N is the set of translations of V;
- $\operatorname{Aut}(V) = N \rtimes \operatorname{GL}(V) \cong \operatorname{AGL}_d(K)$ where $d = \dim(V)$, the dimension of V as a vector space over K;
- AGL(V) acts faithfully and 2-transitively on V;
- The stabilizer of the zero vector is GL(V).

(E7.12)Let $\operatorname{AGL}_d(p) = \operatorname{Aut}(\Omega)$ for Ω an object from Aff_K . Can you specify necessary and sufficient conditions for a subgroup $G \leq \operatorname{Aut}(\Omega)$ to act primitively on Ω .

(E7.13)Let G be a subgroup of $\operatorname{Sym}(k^{\ell})$ with $k \in \{3, 4\}$, and suppose that $G \cong \operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)$ in the product action. Prove that if $k \leq 5$, then G preserves an affine structure, and describe the group $\operatorname{AGL}_d(p)$ in $\operatorname{Sym}(k^{\ell})$ that contains G.

(E7.14)Let k and ℓ be integers with $k \ge 5$. Show that $W := \text{Sym}(k) \wr \text{Sym}(\ell)$ has a unique minimal normal subgroup, and give its isomorphism type.

⁵You may find it helpful to refer to the proof of (E3.23) and (E3.24).