8. O'NAN-SCOTT

(E8.1) Prove that the ψ -action of T on Γ^{ℓ} is semiregular, and that the orbits in this action form blocks for the action of W on Γ^{ℓ} .

(E8.2)Suppose that G is a transitive subgroup of $\text{Sym}(\Omega)$ and that $C \leq C_{\text{Sym}(\Omega)}(G)$. Then the C-orbits form a set of blocks for G.

(E8.3)Prove that W acts faithfully on Ω .

(E8.4)Show that the tuple $(\tau_1, \ldots, \tau_\ell)$ induces a permutation of Ω if and only if $\tau_1 = \tau_2 = \cdots = \tau_m$.

(E8.5) Prove that this action of $W \rtimes \operatorname{Aut}(T)$ on Γ^{ℓ} induces an action on Ω with kernel, K, isomorphic to T. Prove moreover that $G := (W \rtimes \operatorname{Aut}(T))/K$ has a normal subgroup $H \cong W$ such that $G/H \cong \operatorname{Out}(T)$.

(E8.6) Let T be a finite simple group and let

$$D := \{(t,t) \in T \times T\}.$$

Prove that D is a maximal subgroup of $T \times T$.

(E8.7)Prove this result for the case $\ell = 2$. (Recall that the action of G on the set $\{T_1, T_2\}$ is necessarily primitive in this case, so you need to prove that the group G always acts primitively.) You can do $\ell > 2$ if you want a challenge!