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10. Fields and Vector Spaces

We will need some background knowledge concerning linear algebra over an arbitrary field. I will
assume that you are familiar with the definition of a field, a vector space, and with some basic facts about
polynomials over fields; in particular I will also assume the following basic result, which is Vandermonde’s
Theorem.

Proposition 10.1. Let f ∈ k[X] be a polynomial of degree n ≥ 0 with coefficients in a field k. Then f
has at most n roots.

10.1. A diversion into division rings. There is a natural definition of the notion of a field, namely a
division ring, in which one does not require that multiplication is commutative. Much of what will be
discussed below applies in this setting but not all. We give an example of a division ring next and briefly
mention some things to beware of in this more general setting.

Example 20. The real quaternions, H, are defined to be a 4-dimensional vector space over
the real numbers, R.35 Addition is defined to be the usual addition of vectors.

To define multiplication we introduce some notation: we write a vector (a, b, c, d) as
a + bi + cj + dk, we define multiplication by a vector a + 0i + 0j + 0k as the usual scalar
multiplication, we define the multiplication of basis vectors as

i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

and we use distributivity to extend this definition so that multiplication is defined for all
pairs of quaternions.

(E10.1)Check that H is a division ring.

(E10.2) Show that Proposition 10.1 does not hold in H.
In addition to the failure of Proposition 10.1 demonstrated in (E10.2), division rings are made addition-

ally complicated by the fact that one cannot immediately talk of ‘a vector space over a division ring’ - one
must distinguish between left and right vector spaces.

Our choice to eschew the generality offered by division rings is justified by our desire to focus on finite
fields, and by the following classical result.

Theorem 10.2. (Wedderburn’s theorem) A finite division ring is a field.

10.2. Back to fields. Throughout this section k is a field; we write k∗ := k\{0}.

Lemma 10.3. Any finite subgroup of the multiplicative group (k∗, ·) is cyclic.
Proof. Let H be a minimal non-cyclic subgroup of (k∗, ·). Our knowledge of abelian groups implies that
H ∼= Cp × Cp for some prime p. Now every element of H satisfies the polynomial Xp = 1 which is a
contradiction of Proposition 10.1. �

Of course, if k is finite, then this result implies that (k∗, ·) is cyclic. In this case we call those elements
of k∗ that generate (k∗, ·) the primitive elements.

(E10.3)Let k be finite of order n. How many primitive elements does k contain?

Example 21. Let p be a prime and define Fp := Z/pZ, the integers modulo p, with the
usual addition and multiplication. Then Fp is a field.

Lemma 10.4. Let q = pa where p is a prime and a is a positive integer. Then there exists a finite field of
order q.

Proof. (Sketch) The previous example gives the result for a = 1. Now let f(X) ∈ Fp[X] be an irreducible
monic polynomial of degree a ≥ 2. Since Fp[X] is a Principal Ideal Domain we conclude that I := �f(X)� is
a maximal ideal of Fp[X] and we conclude that Fp[X]/I is a field. Since every element of Fp[X]/I contains
a unique (and distinct) polynomial of degree less than a, we conclude that Fp[X]/I is a field of order pa.

35The real quaternions are denoted H in honour of William Rowan Hamilton, the Irish mathematician who first described
them.
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It remains to show that, for every p and every a > 1, there exists a monic irreducible polynomial of
degree a over Fp. The product of all irreducibles of degree dividing a is equal to f(x) = Xpa −X. What
is more, since f �(x) = 1 over Fp, f(x) has no repeated roots.

Now consider the degree of the product of all irreducibles of degree dividing and strictly less than a. It
can be no larger than

�

d

��a,d �=a

dpd ≤
�

i<a

pi =
pa − 1

p− 1
< pa = deg(Xpa −X).

Thus Xpa −X has more factors than this, and they are irreducibles of degree a as required. �

Given a monic irreducible f(X) ∈ Fp[X], one can do computations in F := k[X]/�f(X)� by observing
that

F := {ca−1X
a−1 + ca−2X

a−2 + · · · + c1X + c0 + �f(x)� | c0, . . . , ca−1 ∈ Fp}.
(We are using the fact, mentioned in the proof, that every element of Fp[X]/I contains a unique (and
distinct) polynomial of degree less than a.)

Now one represents the element ca−1X
a−1 + ca−2X

a−2 + · · · + c1X + c0 + �f(x)� ∈ F by the string

ca−1α
a−1 + ca−2α

a−2 + · · · + c1α + c0

where α is just a convenient symbol. Addition and multiplication on the resulting set of polynomials in α
are just the usual addition and multiplication of polynomials, with the extra rule that f(α) = 0.

(E10.4)Show that X2 + 1 ∈ F3[X] is irreducible, and compute the addition and multiplication

tables for F9 := F3[x]/�X2 + 1�.
(E10.5)Show that X3+X+1 ∈ F2[X] is irreducible, and compute the addition and multiplication

tables for F8 = F2[x]/�X3 +X + 1�.

Lemma 10.5. Any finite field k has order pa where p is a prime and a is a positive integer.

Proof. Consider the set

k0 := {1, 1 + 1, 1 + 1 + 1, . . . }.
This is a closed subring of k of order n, say. Furthermore, k ∼= Z/nZ. Now, since k contains no zero-
divisors, neither does k0 and so n = p, a prime. This implies that k0 is a subfield of k of order p and so k
is a vector space over k0 of dimension a, say. Thus |K| = pa as required. �

Note that we have shown that k has a unique subfield, k0, of order p. This is the prime subfield of k,
and any subfield of k must contain k0 (as is clear from its definition).

The following theorem summarizes some of what we have proved about finite fields so far. The last
phrase “and is unique up to isomorphism” has not been proved, but we will take it as a fact in what
follows.

Theorem 10.6. For every prime p and every positive integer a, there is a finite field of order q = pa. This
field is unique up to isomorphism.

In what follows we will write Fq for the field of order q = pa. We close this section with a useful result
that we prove using Galois theory.

Proposition 10.7. Let q = pa.

(1) The automorphism group of Fq is cyclic of of order a, and is generated by the Frobenius automor-
phism, σ : x �→ xp.

(2) For every divisor b of a, there is a unique subfield of Fq of order pb, consisting of all solutions of

xpb = x, and these are all the subfields of Fq.

Proof. Write Fp for the prime subfield of Fq, and observe that the degree of Fq over Fp is a. The Frobenius
map, σ, is an Fp-automorphism of Fq, and has order a. Thus Aut(Fq/Fp) ≥ a = |Fq : Fp|.
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By Galois theory we know that, given a field extension K/F , Aut(K/F ) ≤ |K : F | with equality if and
only if K/F is a Galois extension. We conclude that Fq is a Galois extension and that

Aut(Fq/Fp) = Gal(Fq/Fp) = �σ� ∼= Ca,

the cyclic group of order a.
The subgroups of �σ� are �σa/b� where b ranges over the divisors of a, and Galois theory implies that the

subfields of Fq are, therefore, the the fixed fields of σa/b, as b ranges through the divisors of a. These are

precisely the subfields of order pb consisting of all solutions of xpb = x. �
10.3. Vector spaces. Let V and W be vector spaces over some field k. A semilinear transformation from
V to W is a map T : V → W such that

(1) (v1 + v2)T = v1T + v2T for all v1, v2 ∈ V ;
(2) there exists an automorphism α of k such that

(cv)T = cα(vT )

for all c ∈ k, v ∈ V .

The automorphism α is called the associated automorphism of T . If T is not identically zero, then α is
uniquely determined by T . If α = 1 then T is a linear transformation between V and W .

We are mainly interested in the situation where V = W (in which case we talk of ‘semilinear trans-
formations on V ’). In this case if T is one-to-one and onto, then the inverse map is also a semilinear
transformation and we say that T is invertible.

We can think of semilinear transformations on V in a different way: first fix a basis B of V . if α is an
automorphism of K, then extend the action to V coordinate-wise, by defining

(c1, . . . , cn)α := (cα1 , . . . , c
α
n).

We call this a field automorphism of V with respect to B; note that it is, in particular, a semilinear
transformation from V to V .

Lemma 10.8. Fix a basis B of V . Any semilinear transformation on V is a composition of a linear
transformation and a field automorphism of V with respect to B.

(E10.6)Prove this.

Suppose that V has dimension n over k; recall that all vector spaces of dimension n over k are mutually
isomorphic (this will justify our next notation). We define

(1) End(V ), or Mn(k), to be the set of all linear transformations on V ;
(2) GL(V ), or GLn(k) is the set of all invertible linear transformations on V ;
(3) SL(V ), of SLn(k) is the set of all linear transformations on V of determinant 1;
(4) ΓL(V ), or ΓLn(k) is the set of all invertible semilinear transformations on V .

All of these are groups under the operation of composition. All act naturally on the vector space V (hence
our decision to define transformations on the right).

(E10.7)Prove that ΓLn(k) ∼= GLn(k) �φ Aut(k). You will need to choose an appropriate homo-

morphism φ : Aut(k) → Aut(GLn(K)) to make this work. You may find it convenient to fix a

basis for V – so you can express elements of GLn(k) as matrices – before you choose φ.


