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Figure 4. The Fano plane.

11. Projective Space

One can approach the study of projective spaces from a number of different angles. Since we will be
primarily interested in projective spaces of finite dimension over finite fields, our spaces themselves are finite
and so fall most naturally (it seems to me) into the sphere of combinatorics. Our approach is, therefore,
combinatorial.

11.1. Incidence structures. We define a category IncStruct as follows.
Objects: An object in IncStruct is a finite tuple (P1, . . . , P�, I) where P1, . . . , P� are sets, and I is a

subset of P1 × · · · × P�.
Some terminology: An object I := (P1, . . . , P�, I) is called an incidence structure. Elements from set Pi

are said to have type i. If I contains an element (p1, . . . , p�) then, for 1 ≤ i, j ≤ �, we say that pi is incident
with pj. The incidence structure is called finite if P1, . . . , P� are all finite.

To complete the definition of this category we must, of course, define what the arrows are. We will do this
shortly, but first some examples. Note that the definition of an incidence structure is extremely general; in
most cases incidence structures are only studied subject to extra axioms.

Example 22. We have seen the category SimpleGraph earlier in lectures, and we con-
sidered the category Graph in exercises. Both of these categories could be seen as (full)
subcategories of IncStruct. In particular we define the category Graph as follows:

Objects: An object G := (P1, P2, I) is an incidence structure with 2 types. (Elements
of P1 are what we think of as vertices, elements of P2 are edges). We require that, for any
p2 ∈ P2,

|{p1 ∈ P1 | (p1, p2) ∈ I}| ≤ 2.

Since Graph is a full subcategory of IncStruct, the definition of arrows in Graph is the
same as the definition in IncStruct, and we give this definition in a moment.

Example 23. An abstract projective plane is an incidence structure (P, L, I) such that
(1) any two elements of P are incident with a unique element of L;
(2) any two elements of L are incident with a unique element of P .
(3) there are four elements of P such that no element of L is incident with more than two

of them.
We call elements of P points and elements of L lines. The third axiom listed above (‘presence
of a quadrangle’) is there simply to eliminate some degenerate examples.

If P is finite it is easy to see that L is also finite and, in fact, that |P | = |L|. The smallest
finite projective plane has |P | = 7. It is called the Fano plane and is represented in Figure 4;
in this representation elements of P are drawn as points, and elements of L are drawn as
lines (in six cases) or as a circle; each element of L is incident with three elements of P (and
vice versa).

Example 24. Let V be a vector space of dimension n over a field k. We define projective space
PG(V ), or PGn−1(k), to be the incidence structure (V1, . . . , Vn−1, I) where, for i = 1, . . . , n−1,
Vi is the set of subspaces of V of dimension i and

I := {(v1, . . . , vn−1) ∈ V1 × · · · × Vn−1 | v1 < v2 < · · · < vn−1}.
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In other words two subspaces are incident if and only if one is contained in the other. This
fact allows us to relax language a little: we say things like ‘v1 lies on v2’, or ‘v2 contains v1’
when we really mean that ‘v1 and v2 are incident’.

A subspace U ∈ Vi is said to have projective dimension, pdim(U), equal to i − 1 and we
call elements of V1 ‘points’, elements of V2 ‘lines’, and elements of Vn−1 ‘hyperplanes’. If k is
finite of order q, then we sometimes write PGn−1(q) for PGn−1(k). The incidence structure
PG2(q) is called the Desarguesian projective plane of order q.

(E11.1) Show that PG2(2) and the Fano plane are the same incidence structure. (We would do
better to write that “PG2(2) and the Fano plane are isomorphic as incidence structures”, but we
have not yet defined what we mean by isomorphism.)

(E11.2*) Show that, for any prime power q, PG2(q) is an abstract projective plane.

11.2. Some counting. We are interested in calculating the order of V1, . . . , Vn−1 in PGn−1(q). To do this
it is convenient to introduce Gaussian coefficients. Let q be a prime power, m and n positive integers. Then
define

(10)

�
n

m

�

q

:=
(qn − 1)(qn − q) · · · (qn − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
.

Lemma 11.1. (1) The number of subspaces of projective dimension m − 1 in PGn−1(q) is
�
n
m

�
q
. In

particular, the number of points in PGn−1(q) is
�
n
1

�
q
= qn−1

q−1
.

(2) The number of subspaces of projective dimension m−1 containing a subspace of projective dimension
l − 1 in PGn−1(q) is

�
n−l
m−l

�
q
.

Proof. Let V be an n-dimensional vector space over k = Fq. To prove (a) we count the number of linearly
independent m-tuples of vectors in V . The first entry in the m-tuple can be chosen to be any non-zero
vector, there are qn − 1 of these; the second must lie outside the span of the first, so there are qn − q choices
for this, then qn − q2 for the third and so on. We conclude that the numerator of the right-hand side of
(10) corresponds to the number of linearly independent m-tuples of vectors. Now the result is completed
by observing (using the same reasoning) that the denominator of the right-hand side of (10) corresponds to
the number of linearly independent m-tuples of vectors all lying inside any given m-dimensional subspace
of V .

(E11.3)Prove (b).

�
Gaussian coefficients have properties resembling those of binomial coefficients, to which they tend as

q → 1.

(E11.4)Prove that limq→1

�
n
m

�
q
=

�
n
m

�
.

(E11.5)Prove that �
n

m

�

q

+ qn−m+1

�
n

m− 1

�

q

=

�
n+ 1

m

�

q

.

11.3. Collineations and the fundamental theorem. We are ready to complete the definition of the
category IncStruct:

Arrows: Let I1 = (P 1
1 , . . . , P

1
� , I

1), I2 = (P 2
1 , . . . , P

2
� , I

2) be incidence structures. An arrow I1
F→ I2 is a

set of � functions φi : P 1
i → P 2

i such that

(p1, . . . , p�) ∈ I1 =⇒ (φ(p1), . . . , φ(p�)) ∈ I2.

Note that we only define arrows between incidence structures having the same number of types.

The notion of isomorphism is now clear: An isomorphism I1
F→ I2 is a set of � bijections φi : P 1

i → P 2
i

such that

(p1, . . . , p�) ∈ I1 ⇐⇒ (φ(p1), . . . , φ(p�)) ∈ I2.
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One would expect that an isomorphism I1
F→ I1 would be known as an automorphism, however the termi-

nology for this category is a little different: such a thing is called a collineation. As usual we denote the set
of all collineations of an incidence structure I by Aut(I).

Example 25. Let V be an n-dimensional vector space over a field k. The action of ΓL(V )
on the set V extends naturally to an action on the set of subspaces of V : if v1, . . . , vk ∈ V
and g ∈ ΓL(V ), then we write U = �v1, . . . , vn� and define

U g = �vg1 , . . . , vgk�.
(E11.6*)Prove that this action is well-defined, and that the action preserves the incidence relation

for PG(V ).

This exercise implies that we have a homomorphism φ : ΓL(V ) → Aut(PG(V )). The next result asserts
that this homomorphism is also surjective, i.e. all collineations of PG(V ) are induced by a semilinear
transformation.

Theorem 11.2. (Fundamental theorem of projective geometry) If dimV ≥ 3, then Im(φ) = Aut(PG(V )).

Proof. This is omitted. See [Camb, Chapter 1] or [Tay92]. �
The first isomorphism theorem of group theory implies, then, that

Aut(PG(V )) ∼= ΓL(V )/ ker(φ).

(E11.7) Prove that ker(φ) = {αI ∈ GL(V ) | α ∈ k}.
Let us write K for ker(φ) and observe that K is just the group of scalar transformations in ΓL(V ). Note
that K is actually a subgroup of GL(V ).

We now define three new groups in terms of this subgroup K.

(1) PΓL(V ) := ΓL(V )/K;
(2) PGL(V ) := GL(V )/K;
(3) PSL(V ) := SL(V )/(K ∩ SL(V )).

For X ∈ {Γ, G, S} we write PXLn(k) as a synonym for PXL(V ).
Observe that the Fundamental theorem of projective geometry could be expressed as follows: If dimV ≥ 3,

then
PΓL(k) = Aut(PG(V ).

In particular the three groups just defined all act faithfully on PG(V ).

(E11.8)Prove that K is central in GL(V ). Can you characterize those fields k and those vector

spaces V for which K is central in ΓL(V )?

(E11.9*)Prove that

|PGLn(R) : PSLn(R)| =
�

1, if n is odd;
2, if n is even.

11.4. Duality. Next we define a variant of the category IncStruct that we call WIncStruct. The objects
are the same – incidence structures – but we allow more arrows:

Arrows: Let I1 = (P 1
1 , . . . , P

1
� , I

1), I2 = (P 2
1 , . . . , P

2
� , I

2) be incidence structures. An arrow I1
F→ I2 in

WIncStruct is a permutation π ∈ Sk, and set of � functions φi : P 1
i → P 2

iπ such that

(p1, . . . , p�) ∈ I1 =⇒ (φ(p1π−1), . . . , φ(p�π−1)) ∈ I2.

Note that, as in IncStruct, we only define arrows between incidence structures having the same number of
types. More arrows are allowed here because we allow the types of objects to be jumbled.

An isomorphism I1
F→ I2 is a permutation π ∈ Sk, and set of � bijections φi : P 1

i → P 2
iπ such that

(p1, . . . , p�) ∈ I1 ⇐⇒ (φ(p1π−1), . . . , φ(p�π−1)) ∈ I2.

Of course an isomorphism in IncStruct is an isomorphism in WIncStruct. For an incidence structure I,

we call an isomorphism I F→ I in WIncStruct a weak collineation, and the set of weak collineations of I
is denoted WAut(I).
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Let V be a vector space over a field k of dimension n ≥ 3. Then we claim that there are weak collineations
of PG(V ) that are not collineations. To see this, let V ∗ = Hom(V, k), the dual space of V .

(E11.10)V ∗ is a vector space over k of dimension n.

For U ≤ V , define the annihilator of U , given by

U † := {f ∈ V ∗ | uf = 0 for all u ∈ U}.
(E11.11)U �→ U † is a bijection between the subspaces of V and the subspaces of V ∗.

(E11.12) U1 ≤ U2 if and only if U
†
1 ≥ U †

2 .

(E11.13)If U ≤ V , then dim(U †) = n− dim(U) and pdim(U †) = n− 2− pdim(U)

Since all vector spaces over k of dimension n are mutually isomorphic, it follows that V ∗ ∼= V and so the
function V → V ∗, U �→ U † can be thought of as a map from V to V ; indeed by (E11.12) we have a function
PG(V ) → PG(V ).

(E11.14)Prove that U → U † is a weak automorphism of PG(V ).

A weak collineation PG(V ) → PG(V ) with the property that a subspace of dimension d is mapped to a
subspace of dimension n − d is called a duality. Clearly U → U † is a duality. In particular, if n ≥ 3, the
function U → U † cannot be an automorphism of PG(V ).

Proposition 11.3. If n ≥ 3, and Δ is a duality of PG(V ), then Δ = st−1 where s is induced by a semilinear
automorphism V → V ∗ and t is the annihilator map, U → U †.

Proof. Since Δ is a duality, the map Δt is an isomorphism PG(V ) → PG(V ∗). Since V ∼= V ∗, the
Fundamental Theorem of Projective Geometry implies that it is induced by a semilinear isomorphism V →
V ∗. �

(E11.15*) Prove that, for n ≥ 3, WAut(PGn(q)) contains Aut(PGn(q)) as an index 2 subgroup.

Can you say any more about the structure of WAut(PGn(q))?

11.5. Abstract projective space. It turns out that one can characterize the geometric properties of
PGn−1(q) rather straightforwardly. For I = (P1, P2, I) a finite incidence structure of points and lines we
define the following three properties.

(APS1) Two points lie on a unique line.
(APS2) A line meeting two sides of a triangle, not at a vertex, meets the third also.36

(APS3) A line contains at least two points.
(APS4) A line contains at least three points.

An incidence structure satisfying (APS1) to (APS3) is called an abstract projective space. If it satisfes
(APS4) then it is a thick abstract projective space.

(E11.16)PGn−1(q) is a thick abstract projective space.

The key theorem here is the following which we will not prove.

Theorem 11.4. (Veblen-Young) A finite thick abstract projective space I = (P1, P2, I) with 1 < |P1|, |P2|
is either

• a projective plane, or
• isomorphic to PGn−1(q) for some n and q.

Note that the condition 1 < |P1|, |P2| is only present to eliminate some obvious and uninteresting degen-
eracies. The Veblen-Young theorem reduces the question of classifying the finite thick abstract projective
spaces to that of classifying the finite abstract projective planes. Unfortunately the latter is a very difficult
project! For instance there are many finite abstract projective planes other than PG2(q).

We remark finally that the ordinary triangle is an example of an abstract projective space that is not
thick. For this reason projective planes are sometimes thought of as ‘generalized triangles’. This terminology
will assume more significance when we come to consider polar spaces.

36We are using descriptive language here to save pain. It is hopefully clear what we mean by a ‘triangle’ and ‘meeting’...


