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7. Minimal normal subgroups and the socle

Throughout this section G is a nontrivial group. A minimal normal subgroup of G is a normal subgroup
K �= 1 of G which does not contain any other nontrivial normal subgroup of G. The socle, soc(G) is the
subgroup generated by the set of all minimal normal subgroups (if G has no minimal normal subgroups,
then we set soc(G) = 1).

(E7.1)Find the socle of D10, A4, S4, S4 × Z.

(E7.2)Give an example of a group that has no minimal normal subgroup.

(E7.3)If G is the direct product of a (possibly infinite) number of finite simple groups, then what

is soc(G)?

(E7.4)Give a characterization of almost simple groups in terms of their socle.

Clearly soc(G) is a characteristic subgroup of G. 26

Theorem 7.1. Let G be a nontrivial finite group.

(1) If K is a minimal normal subgroup of G, and L is any normal subgroup of G, then either K ≤ L
or �K,L� = K × L.27

(2) There exist minimal normal subgroups K1, . . . , Km of G such that soc(G) = K1 × · · ·Km.
(3) Every minimal normal subgroup K of G is a direct product K = T1×· · ·Tk where the Ti are simple

normal subgroups of K which are conjugate in G.
(4) If the subgroups Ki in (2) are all nonabelian, then K1, . . . , Km are the only minimal normal sub-

groups of G.

Proof. (1) Since K ∩ L � G, the minimality of K implies that either K ≤ L or K ∩ L = {1}. In the
latter case, since K and L are both normal, we have that �K,L� = KL = K × L.

(2) Because G is finite we can find a set S = {K1, . . . , Km} of minimal normal subgroups which is
maximal with respect to the property that H := �S� = K1 × · · · × Km. We must show that H
contains all minimal normal subgroups of G, and so is equal to soc(G). This follows immediately
from (1).

(3) Let T be a minimal normal subgroup of K and observe that all conjugates T g, for g ∈ G, are
also minimal normal subgroups of K. Choose a set S = {T1, . . . , Tm} of these conjugates which is
maximal with respect to the property that L := �S� = T1 × · · · × Tm. Then, arguing à la (2), we
see that L contains all of the conjugates of T under G and so L�G. But, since {1} < L ≤ K and
K is minimal normal, we conclude that K = L = T1 × · · · × Tm. Note, finally, that, for Ti to be
minimal normal in T1 × · · · × Tm, we must have Ti simple.

(4) Let K be a minimal normal subgroup of G that is distinct from K1, . . . , Km, then, applying (1)
with L = Ki, we find that �K,L� = K × L and, in particular, K centralizes each of the Ki. Thus
K ≤ Z(soc(G)). However if each Ki is nonabelian, then (3) implies that Z(Ki) = {1} and we have
a contradiction, as required.

�

Observe that if a minimal normal subgroup K is abelian, then K is an elementary-abelian p-group for
some prime p.28

(E7.5)Suppose that G is elementary abelian. How many minimal (resp. maximal) normal sub-

groups does G have?

26i.e. soc(G) is invariant under any automorphism of G. This is because any automorphism of G must permute the
minimal normal subgroups of G.

27I am considering the internal direct product here, a special case of the internal semidirect product that we have already
seen.

28Recall that an elementary-abelian p-group is defined to be a group that is isomorphic to Cp × · · · × Cp� �� �
n

, where n is finite,

p is a prime, and Cp is a cyclic group of order p.
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7.1. Finite groups with elementary abelian socle. In this section G is a finite group with an
elementary-abelian socle. We write

V := soc(G) = Cp × · · · × Cp� �� �
d

.

Observe that V has a natural structure as a vector space over Fp, the field of order p. This allows us to
make the following assertion.

Lemma 7.2. G/CG(V ) is isomorphic to a subgroup of GL(V ), and G/CG(V ) acts on V via multiplication
(on the right) by matrices.

Proof. Consider the action ofG on V by conjugation. Lemma 3.2 implies that this induces a homomorphism
φ : G → Aut(V ) where we view V is an object from Group. Furthermore CG(V ) is the kernel of φ and,
in particular, it is a normal subgroup of G.

Now, since CG(V ) is the kernel of the conjugation action, the first isomorphism theorem of groups implies
that G/V is isomorphic to a subgroup of Aut(V ). Now the result follows from (E7.6) below. �

(E7.6) Let V be an elementary-abelian p-group.
(1) Let G be a group of automorphisms of V as an object from Group. Prove that G acts linearly

on V , i.e. prove that G is a group of automorphisms of V as an object from VectFp.
(2) Let G be a group of automorphisms of V as an object from VectFp. Prove that G is a group

of automorphisms of V as an object from Group.
(3) Conclude that Aut(V ) = GL(V ), whether we consider it an object of Group or of VectFp.

Let us strengthen our supposition: let us suppose that G splits over V , i.e. that there exists a subgroup
H < G, such that G = V �H. To state the structure result in this case, we need a definition.

Given a vector space V over a field K, define

AGL(V ) := {(g, v) | v ∈ Kd, g ∈ GL(V )} = Kd �GL(V ).

Here we write Kd to mean the additive group whose elements are d-tuples with entries from K. Multipli-
cation is defined in the usual way for a semidirect product:

(g1, v1)(g2, v2) := (g1, g2, v
g2
1 v2)

where, for v ∈ Kn and g ∈ GLd(K), we define vg to be the product of v (thought of as a row vector) with
g, a matrix.

Note that, just as with GL(V ), we will write AGLd(K) as a pseudonym for AGL(V ). Furthermore, if
K = Fp is finite, then we will write AGLd(p) as a synonym for AGLd(Fp).

Proposition 7.3. Suppose that G is a finite group with socle V of order pd for some prime p. If G splits
over V , then G is isomorphic to a subgroup of AGLd(p).

Proof. Let H be a subgroup of G such that G = V �H. Consider the action of H on V by conjugation.
We claim that CH(V ) is a normal subgroup of G; indeed it is enough to prove that it is a normal subgroup

of H, since G = V H and CH(V ) is certainly normalized by V . To prove the claim, take h ∈ CH(V ), h1 ∈ H
and v ∈ V . Now observe that

v(h
h1 ) = (hh1)−1v(hh1)

= (h−1
1 hh1)

−1v(h−1
1 hh1)

= h−1
1 (h−1(h1vh

−1
1 )h)h1

= h−1
1 (h1vh

−1
1 )h1 = v.

Thus hh1 ∈ CH(V ) and the claim is proved. But now, since H ∩ V = {1}, we know that CH(V )∩ V = {1}
and so, since V is the socle, we conclude that CH(V ) = {1}.

Now consider CG(V ). If g ∈ G, then g = vh for a unique v ∈ V and h ∈ H and g ∈ CG(V ) if and only
if h ∈ CG(V ). In particular,

CG(V ) = V.CH(V ) = V.
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Now Lemma 7.2 implies that G/V is isomorphic to a subgroup of GL(V ). Moreover the group H ∼= G/V
acts on V by right multiplication by matrices; in other words V �H is isomorphic to a subgroup of AGLd(p)
as required. �

(E7.7)Suppose that K is finite.
• Prove that soc(AGLd(K)) ∼= Kd and, moreover, that soc(AGLd(K)) is a minimal normal

subgroup of AGLd(K).
• Suppose that soc(AGLd(K) ≤ G ≤ AGLd(K). Under what conditions is soc(AGLd(K)) a

minimal normal subgroup of G?

(E7.8)Describe the structure of AGL1(p) for a prime p.

7.2. The socle of a primitive permutation group.

Theorem 7.4. If G is a finite primitive subgroup of Sym(n), and K is a minimal normal subgroup of G,
then exactly one of the following holds:

(1) for some prime p and some integer d, K is a regular elementary abelian group of order pd, and
soc(G) = K = CG(K).

(2) K is a regular non-abelian group, CG(K) is a minimal normal subgroup of G which is permutation
isomorphic to K, and soc(G) = K × CG(K).

(3) K is non-abelian and soc(G) = K.

Proof. Let C = CG(K). Since C � G, either C = 1 or C is transitive. Since K is transitive, Lemma 3.7
implies that C is semiregular, and hence either C = 1 or C is regular.

Suppose that C = 1. Clearly K is non-abelian. Furthermore Theorem 7.1 (1) implies that K is the only
minimal normal subgroup of G and so soc(G) = K and conclusion (3) of the result holds.

Suppose instead that C is regular. Then (E3.23) implies that CSym(Ω)(C) is regular. Since K ≤
CSym(Ω)(C) and K is transitive, we conclude that K = CSym(Ω)(C). Similarly, C = CSym(Ω)(K) and,
by (E3.24), C and K are permutation isomorphic.

Now, since C is regular, we conclude that C is a minimal normal subgroup of G (since any proper
subgroup of C is intransitive). Now Theorem 7.1 (1) states that every minimal normal subgroup of G
distinct from K is contained in C. Thus soc(G) = KC which equals K or K × C depending on whether
C ≤ K or not.

If C ≤ K, then C = K, K is abelian, soc(G) = K and conclusion (1) holds. If C �≤ K, then conclusion
(2) holds. �

(E7.9) Suppose that G is a maximal primitive subgroup of Sym(n). Prove that G has a unique

minimal normal subgroup (and so possibility (2) in Theorem 7.4 cannot occur).29

(E7.10) Suppose that K is a regular normal subgroup of G, a subgroup of Sym(n). Let H be
the stabilizer of a point in the action on Ω := {1, . . . , n}. Then G = KH,K ∩ H = {1} and, in
particular, G splits over K, i.e. G = K �H.

7.3. Primitive permutation groups with abelian socle. Our approach now is similar to that of §§5
and 6. In those sections we studied subgroups G of Sym(n) that preserved certain structures on the set
{1, . . . , n} (in §5, this was a G-congruence; in §6 it was a G-product structure). In this section the structure
of interest is a G-affine structure.

It will be convenient to take a more categorical approach here, simply becaused the category associated
to a G-affine structure is very standard. The category of interest is called AffK ; it is very similar to VectK ,
but we are allowing more arrows.30

Objects: Objects are finite-dimensional vector spaces over the field K.
Arrows: An arrow g : V1 → V2 is an affine transformation, i.e. a map that acts linearly on the

difference between two vectors. In other words g : V1 → V2 is an affine transformation if there exists a

29You may find it helpful to refer to the proof of (E3.23) and (E3.24).
30we have done this before – see Example 3 – but in a different direction.
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linear transformation h : V1 → V2 such that

vg2 − vg1 = (v2 − v1)h.
Suppose that V is an object in AffK . For x ∈ V define the map

nx : V → V, v �→ v + x.
The map, nx, is called the translation by the vector x and one can check that nx is an arrow in AffK .

31

The set of all translations
N := {nx | x ∈ V }

is a subgroup of Aut(V ). It is clear that any linear transformation of V is also an affine transformation,
thus GL(V ) is also a subgroup of Aut(V ).

(E7.11) Let V be a vector space. Prove that
• N ∩GL(V ) = {1}, where N is the set of translations of V ;
• Aut(V ) = N �GL(V ) ∼= AGLd(K) where d = dim(V ), the dimension of V as a vector space

over K;
• AGL(V ) acts faithfully and 2-transitively on V ;
• The stabilizer of the zero vector is GL(V ).

Now let G be a subgroup of Sym(Ω) where Ω is a finite set. An affine structure is a bijection θ : Ω → V ,
where V is a finite-dimensional vector space over a finite field K. An affine structure is a G-affine structure
if G acts on V as an object from AffK .

32 By Lemma 3.2, if a G-affine structure exists, then the action of
G on Ω yields a homomorphism G→ Aut(V ). By (E7.11) Aut(V ) ∼= AGLd(p) for some positive integer d
and some prime p.

Lemma 7.5. Let Ω be a finite set of order n. Suppose that θ : Ω → V is an affine structure, where V is
a d-dimensional vector space over a finite field K = Fp.

(1) θ is a G-affine structure for a unique subgroup G of Sym(Ω) that is isomorphic to AGLd(p);
(2) if θ is a H-affine structure for some group H ≤ Sym(Ω), then H ≤ G.

Proof. We use θ to identify Ω with V throughout. We have seen that Aut(V ) ∼= AGLd(p) where we consider
V an object from AffK . By (E7.11), the action of AGL(V ) on V , as a set, is faithful, thus AGL(V ) is a
subgroup of Sym(V ).

Now suppose that θ is a H-affine structure for some group H ≤ Sym(Ω). By definition every element of
h is an arrow in AffK and so lies in AGL(V ). We are done. �

Lemma 7.5 can be combined with Proposition 6.5 to yield the following.

Proposition 7.6. Let H ≤ Sym(Ω) where |Ω| <∞. One of the following holds:

(1) H is intransitive and H ≤ Sym(k)× Sym(n− k) for some 1 < k < n;
(2) H is transitive and imprimitive and H ≤ Sym(k) � Sym(�) for some 1 < k, l < n with n = kl;
(3) H is primitive, preserves a non-trivial product structure, and H ≤ Sym(k) � Sym(�) for some

1 < l < n, 2 < k < n with n = kl;
(4) H is primitive, preserves an affine structure, and H ≤ AGLd(p) for some d > 1 and prime p with
n = pd;

(5) H is primitive and preserves neither an affine structure nor a non-trivial product structure.

We have seen examples of subgroups of Sym(Ω) of every given type, except those that are primitive and
preserve an affine structure. To see that the latter type of group really exisits, recall that AGLd(p) acts
2-transitively on the associated vector space, thus, in particular, it is primitive; of course, by definition, it
also preserves an affine structure.

31Indeed, a translation is precisely an affine map for which the associated linear map is the identity.
32As usual, I am identifying Ω with θ(Ω) so that I can talk of ‘G acting on V ’. If I wanted to make this precise, I would

define the action of G on V via
vg := θ((θ−1(v))g).
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(E7.12)Let AGLd(p) = Aut(Ω) for Ω an object from AffK . Can you specify necessary and

sufficient conditions for a subgroup G ≤ Aut(Ω) to act primitively on Ω.

The following exercise implies that Proposition 7.6 can be strengthened by requiring that 4 < k for
possibility (3).

(E7.13)Let G be a subgroup of Sym(k�) with k ∈ {3, 4}, and suppose that G ∼= Sym(k) � Sym(�)

in the product action. Prove that if k ≤ 5, then G preserves an affine structure, and describe the

group AGLd(p) in Sym(k�) that contains G.

7.4. The socle and affine structures. Our job now is to connect our knowledge about the socle of a
primitive permutation group with the work in the previous section on affine structures.

Lemma 7.7. Suppose that G is a subgroup of Sym(Ω) and that G contains a normal regular subgroup K.
Let H be the stabilizer of any point of ω. The action of G on Ω is permutation isomorphic to the action
of G on the set K given by

ϕ : G×K → K, (g, k1) �→ (k1k)
h

where g = kh for some k ∈ K and h ∈ H.

It is important to realise that the given action of G on K is not an action of G on K as an object from
Group.33 Note, too, that we are not assuming that Ω is finite here.

Proof. Fix ω ∈ Ω and define a function β : K → Ω, k �→ ωk. Since K is regular this function is a bijection.
Let 1 : G → G be the identity map, and let ψ be the action of G on Ω given by the embedding of G in
Sym(Ω). Now the result is equivalent to proving that the following diagram commutes:

G×K K

G× Ω Ω

ϕ

(1,βω) βω

ψ

(g, k1) (k1k)
h

(g, ωk1) (∗)

ϕ

(1,βω) βω

ψ

Write g = kh for some k ∈ K and h ∈ H. If we follow the diagram from the top-left corner, down and
across, then (∗) = ωk1g = ωk1kh. On the other hand, if we go right and then down, we obtain

(∗) = ω(k1k)h = ωh
−1k1kh = (ωh

−1

)k1kh = ωk1kh

and we are done. �

Proposition 7.8. Suppose that G is a subgroup of Sym(n) and that G contains a normal regular elementary
abelian subgroup V . Then there is a G-affine structure θ : Ω → V , and there is a group M such that
G ≤M ≤ Sym(n) with M ∼= AGL(V ).

Proof. By Lemma 7.7 we know that the action of G on Ω is permutation isomorphic to the action ϕ on V .
Thus it is enough to show that ϕ is an action of G on V as an object from AffK .

Let H be the stabilizer of 0, the identity element in V , and recall that, by (E7.11), H = GL(V ). Let
g ∈ G and let h ∈ H, v ∈ V be the unique elements such that g = vh. Let v1, v2 ∈ V and observe that

vg1 − vg2 = (v1 + v)
h − (v2 + v)

h = vh1 + vh − vh2 − vh = vh1 − vh2 = (v1 − v2)h

as required. �

33To see why you should think of the effect of this action on the identity of K.
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7.5. What is left. Recall that we are trying to understand the subgroups of Sym(n), and that, by
Proposition 5.8, this amounts to understanding the primitive subgroups. Now Theorem 7.4 gives three
possibilities for a primitive subgroup, and Proposition 7.8 gives a full description for possibility (1).

If, moreover, we restrict our attention to maximal primitive subgroups of Sym(n), then (E7.9) implies
that possibility (2) cannot occur.

Thus we can state the following corollary to Theorem 7.4:

Corollary 7.9. If M is a finite maximal primitive subgroup of Sym(n), and K is a minimal normal
subgroup of G, then exactly one of the following holds:

(1) n = pd for some prime p and some integer d, and M = AGLd(p).
(2) K is non-abelian and soc(G) = K.

Thus, to understand the maximal subgroups of Sym(n), we need to understand those finite primitive
groups that have a unique minimal normal subgroup K that is nonabelian. It is beyond the scope of this
course to properly analyse this situation, although we will at least be able to state a theorem pertaining
to this situation in the next section. Before we get there, though, let us observe that we have already seen
two examples of primitive subgroups of this kind:

• In Exercise 16 we looked at actions of Sym(n) on the coset spaces of maximal subgroups other than
Alt(n). This situation can be generalized to cover the action of any almost simple group G on the
coset space of a maximal subgroup that does not contain soc(G).

• In §6 we considered the product action of the wreath product W := Sym(k) � Sym(�), and the next
exercise shows we have another example.

(E7.14)Let k and � be integers with k ≥ 5. Show that W := Sym(k) �Sym(�) has a unique minimal
normal subgroup, and give its isomorphism type.


