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8. O’Nan-Scott

Throughout this section Ω is a finite set. There are two versions of the O’Nan-Scott theorem, the first
gives the structure of the maximal subgroups of Sym(Ω) and is due (unsurprisingly) to O’Nan and Scott
(independently). This is the version that we will consider here.
Before we proceed, a word about the second version: this is a stronger statement outlining the structure

of all finite primitive permutation groups – not just those that are maximal in Sym(Ω). This version was
stated initially by O’Nan and Scott, but it contained an error that was later corrected by Aschbacher, and
hence this theorem is sometimes called the Aschbacher-O’Nan-Scott theorem.
The proof of the second, stronger statement is not much more difficult that the one we consider, save

for two facts: First it needs an extra definition, that of a twisted wreath product, that I do not want to
discuss here. Second all known proofs are dependent on a proof of the Schreier Conjecture, a result that
is only known to be true as a consequence of the Classification of Finite Simple Groups. 34

Throughout this section Ω is a finite set of order n.

8.1. The statement.

Theorem 8.1. (O’Nan-Scott theorem) Let G be a maximal subgroup of Sym(Ω). One of the following
holds:

(1) G is intransitive and G = Sym(k)× Sym(n− k) where 1 < k < n;
(2) G is transitive and imprimitive and G = Sym(k) � Sym(�) where 1 < k, � < n with n = k�;
(3) G preserves a product structure, and G = Sym(k) � Sym(�) where 2 < k < n and 1 < � < n with

n = k�;
(4) G preserves an affine structure, and G = AGL(d, p) where d ≥ 1, p is prime, and n = pd;
(5) G is of diagonal type; or
(6) G is almost simple.

Note that the statement does not assert that all of the listed groups are maximal, but that all maximal
groups are listed.
Referring to Corollary 7.9, we see that, in order to prove the O’Nan-Scott theorem, we must prove the

following assertion:

Theorem 8.2. Suppose that G is a primitive subgroup of Sym(Ω), and that G contains a unique minimal
normal subgroup K. Suppose that K is non-abelian. Then G either preserves a product structure, is almost
simple, or is of diagonal type.

We will not prove this theorem here, but we make one remark. Suppose that K is regular; then (E3.23)
implies that C := CSym(Ω)(K) is also regular. Since K is non-abelian, C is distinct from K; indeed, since
K is a direct product of some number of isomorphic non-abelian simple groups, C ∩ K = {1}. But this
contradicts the fact that K is the unique minimal normal subgroup K.
Thus we conclude that K is not regular. Now Theorem 8.2 follows immediately from [DM96, Theorem

4.6.A].

8.2. Groups of diagonal type. To understand the statement of the O’Nan-Scott theorem, we need to
define ‘subgroups of diagonal type’.
Let T be a finite non-abelian simple group of order k. By considering the right regular action of T (see

Example 14), we obtain an embedding T ≤ Sym(Γ) where Γ is a finite set of order k. Let Δ be a finite set
of order � and consider the wreath product W := T �Δ S� in its product action on Γ�.
Let us fix a bijection between Γ with T , so that the two sets are identified. Then the action of W on Γ

is given by right multiplication of the base group:

(γ1, . . . , γ�)
(t1,...,t�)s = (γ1t1, . . . , γ�t�)

s = (γ1s−1 t1s−1 , . . . , γ�s−1 t�s−1 )

34The Schreier Conjecture: If K is a finite simple group, then Out(K) is solvable.
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Proposition 6.3 implies that, since T acts regularly on Γ, W does not act primitively on Γm. Let us
explicitly construct a nontrivial W -congruence: Consider the action ψ of T on Γ� given by

(γ1, . . . , γ�)
t = (t−1γ1, . . . , t

−1γ�).

(E8.1) Prove that the ψ-action of T on Γ� is semiregular, and that the orbits in this action form

blocks for the action of W on Γ�.

In fact, Exercise (E8.1) is a specific case of the following general fact (how?).

(E8.2)Suppose that G is a transitive subgroup of Sym(Ω) and that C ≤ CSym(Ω)(G). Then the

C-orbits form a set of blocks for G.

Now define Ω to be the set of all T -orbits (via the action ψ) on Γ�. By (E8.1), the action of T on Γ� is
semiregular, and so |Ω| = |T |�−1. In addition, (E8.1) implies that W has a well-defined action on Ω, and
we call this the diagonal action of T �.

(E8.3)Prove that W acts faithfully on Ω.

We call a group G ≤ Sym(Ω) a group of diagonal type if T � ≤ G ≤ NSym(Ω)(T
�). To fully understand

such groups, then, we should understand the structure of NSym(Ω)(T
�).

We know already that W ≤ N := NSym(Ω)(T
�). The next lemma is [DM96, Lemma 4.5B].

Lemma 8.3. W �N and N/W ∼= Out(T ).

To see how Out(T ) enters things, observe that Aut(T )� acts naturally on T � via

(t1, . . . , t�)
(τ1,...,τ�) = (tτ11 , . . . , t

τ�
� ).

(E8.4)Show that the tuple (τ1, . . . , τ�) induces a permutation of Ω if and only if τ1 = τ2 = · · · = τm.

The exercise implies that the action of Aut(T ) on Γ� defined via

(t1, . . . , t�)
τ = (tτ1, . . . , t

τ
� ).

induces an action on Ω. Now we define an action of W � Aut(T ) on Γ� via

(γ1, . . . , γ�)
((t1,...,t�)s,a) = (γ1s−1 t1s−1 , . . . , γ�s−1 t�s−1 )a = ((γ1s−1 t1s−1 )a, . . . , (γ�s−1 t�s−1 )a).

(Here we write a for an element of Aut(T ).)

(E8.5)Prove that this action of W � Aut(T ) on Γ� induces an action on Ω with kernel, K, iso-

morphic to T . Prove moreover that G := (W � Aut(T ))/K has a normal subgroup H ∼= W such

that G/H ∼= Out(T ).

Example 19. The smallest n for which Sym(n) has a subgroup of diagonal type is n = 60.
In this case T ∼= Alt(5) and � = 2 and the wreath product is W ∼= Alt(5) �Sym(2). As usual
write W = B �H where B = T × T and H ∼= Sym(2).
Consider the action of T × T on the set of blocks described above, so that we obtain

an embedding of T × T in Sym(60); write N for NSym(60)(T
2). Since Sym(5) is a split

extension of Alt(5) we can write N in a particularly simple form, as follows: Let (t1, t2)a
be an element of W . Now all outer automorphisms of T are induced by elements from the
subgroup J := �(1, 2)�. What is more the natural conjugation action of J on B given by

(b1, b2)
j = (bj1, b

j
2)

commutes with the action of H on B. Thus we can write N ∼= (T × T )� (H × J) and the
action of N on Ω is given by

(γ1, γ2)
(t1,t2)(1,j) = (a−1γ1t1a, a

−1γ2t2a) and (γ1, γ2)
(t1,t2)(h,j) = (a−1γ2t2a, a

−1γ1t1a)

where h is the unique non-trivial element of H. (Note that we give the action on T ×T and
then must quotient this by the equivalence relation given by left multiplication of T .)
Consider the element (1, 1) ∈ T × T . Write B for the block containing (1, 1) and observe

that
B = {(a, a) | a ∈ T} ∈ Ω.
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Thus, an element (t1, t2)(1, j) ∈ N sends (1, 1) to an element of B if and only if

(γ1, γ2)
(t1,t2)(1,j) = (a−1γ1t1a, a

−1γ2t2a) = (δ, δ)

for some δ ∈ T . It is easy to check that this implies that t1 = t2. Similarly an element
(t1, t2)(h, j) ∈ N sends (1, 1) to an element of B if and only if

(γ1, γ2)
(t1,t2)(h,j) = (a−1γ2t2a, a

−1γ1t1a) = (δ, δ)

for some δ ∈ T , and once again we require that t1 = t2). Thus the stabilizer in N of the
block B is the group

NB := {(t, t)(h�, j) | t ∈ T, h� ∈ H, j ∈ J}.
This group has index 60 in N , so we see that N is transitive. Suppose that NB < M ≤ G and
let g = (t1, t2)(h

�, j) ∈ M \NB. Since H×J ≤ NB, there is an element g� = (t, t)(h�, j) ∈ NB
and now observe that g−1g� ∈ (M \NB)∩B. But now (E8.6) below implies that M ≥ B =
T × T and, since M ≥ H × J , M = G. We conclude that the action is primitive.

(E8.6) Let T be a finite simple group and let

D := {(t, t) ∈ T × T}.
Prove that D is a maximal subgroup of T × T .

Proposition 8.4. [DM96, Theorem 4.5.A] If G ≤ Sym(Ω) is a group of diagonal type, then G is primitive
if and only if the action of G by conjugation on the set {T1, . . . , T�} of minimal normal subgroups of T � is
primitive.

In particular NSym(Ω)(T
�) is primitive for all � ≥ 2.

(E8.7)Prove this result for the case � = 2. (Recall that the action of G on the set {T1, T2} is

necessarily primitive in this case, so you need to prove that the group G always acts primitively.)

You can do � > 2 if you want a challenge!

8.3. A remark on F ∗(G). The O’Nan-Scott theorem is a spectacular example of the efficacy of studying
the socle of a group G when one wants to understand the behaviour of G.
There is a somewhat similar object to the socle that is also worth mentioning, that of the generalized

Fitting group, F ∗(G). This object was first introduced by Bender and proved to be of central importance
in the proof of CFSG. Its definition resembles that of the socle, with some extra complications that yield
a rather extraordinary pay-off: it turns out that F ∗(G) controls the structure of the whole group G in a
way that the socle cannot do in general.
We won’t discuss F ∗(G) in this course, but the keen student may like to look it up. See, for instance,

[Asc00].


