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9. SERIES

9.1. Composition series and abelian series. Let H < GG. A series from H to G is a finite sequence
(G;)o<i<k of subgroups of G, such that
(8) H=G, <G, 4G, 4--- 4G, =G.

We call a sequence a series for G if it is a series from {1} to G.
Consider a series (G;)o<i<k for a group G. We say that the series has length k, and we call it

e a composition series if, for i = 1,...,k, Gy/Gj_1 is non-trivial and simple. The abstract group
G /Gr—1 is called a composition factor of G.

e an abelian series if for i = 1,..., k, G/Gj_; is abelian.

e a normal series if, fort=1,.... k, G; JG.

e a central series if it is a normal series and, for 1,... k, G;/G;_1 is central in G/G;_;.

Suppose that we have two series from H to G, the first given by (8), the second by:
(9) H:HOS]HlﬁHQS]"‘S]Hl:G-

Series (8) and (9) are called equivalent if k = [ and there exists a permutation = € Sy such that, for
i=1,...k

Gi/Gi-1 = Hiz/Hir1.

The series (9) is said to be a refinement of series (8) if & < [ and there are non-negative integers
Jo<p<--- <jk§lSllChthat Gle]Z fOIiIO,...,/C.

Now the key result concerning series is due to Schreier [Ros94, 7.7]:

Lemma 9.1. Let G be a finite group. Any two series have equivalent refinements.
(E9.1) Prove this. (This is hard.)
A corollary of Lemma 9.1 is the Jordan-Holder theorem:
Corollary 9.2. If G is finite, then any two composition series are equivalent.

(E9.2) Prove this.
Corollary 9.2 implies, in particular, that the multiset of composition factors associated with any com-
position series of a finite group G is an invariant of G.

9.2. Derived series. For g,h € GG, define the commutator of g and h,
g, h] == g~ 'h™"gh.
The commutator subgroup, or derived subgroup of G, written G’ or [G,G] or GW, is the group
(lg:h] 1 g9.h € G).
Warning. G’ is the group generated by all commutators of the group G, i.e. the smallest subgroup of
GG that contains all commutators. The set of all commutators in G is not necessarily a group.
(E9.3) Prove that, for N a normal subgroup of G, the quotient G/N is abelian if and only if
G' < N.
(E9.4) Find an example of a group G such that G’ is not equal to the set of all commutators. (This
is tricky; if you know about free groups, then I'd start there...)
We can generalize this construction as follows.
GO =G,
G .= [¢"=Y g V] for n € N.
We obtain a descending sequence of groups
LGP a9 a@

which is called the derived series of G. If, for some k, G®) = G*+D then, clearly, G® = GU for every
[ > k and we say that the derived series terminates at G*). Note that if the derived series does not
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terminate for any k then it is not strictly speaking a series. (Of course the derived series of a finite group
always terminates.)

(E9.5) Prove that (provided it terminates) the derived series is a normal series.
We call G perfectif G =[G, G]. If G is finite, then the derived series terminates after k steps at a perfect
group.
9.3. Solvable groups. We say that G is soluble or solvable if G has an abelian series.

(E9.6) Prove that, if G is finite, then G is solvable if and only if all composition factors of G are
cyclic of prime order. Give an example of a solvable group that does not have a composition series.

(E9.7) Prove that a finite group G is solvable if and only if the derived series of G terminates at
{1}.

9.4. Nilpotent groups. We say that G is nilpotent if G has a central series. The nilpotency class of G is
the minimum integer n for which G has a central series

{1} =Gy <Gy <+ <G,
(E9.8) What is another name for a nilpotent group of class 17
(E9.9) Prove that a p-group is nilpotent.
Nilpotent groups have two alternative definitions, as the next two exercises will make clear. For two

subgroups H, K < G define
[H,K] = ([h,k] | h € H k € K).

Note that this is consistent with our definition of [G,G]|. Now define a sequence of groups as follows:
G .= @G,
G .= [GI""1 @] for n € N,
We obtain a descending sequence of groups
...S]G[Z] S]G[I]S]G

which is called the lower central series of G. If, for some k, G = GIF+1 then, clearly, GI¥! = GI! for every
[ > k and we say that the lower central series terminates at G*. The lower central series is a series for G
provided it terminates at {1}.

(E9.10) A group is nilpotent if and only if the lower central series terminates at {1}. The nilpotency
class of a nilpotent group G is equal to the length of the lower central series.

Define a sequence of groups as follows:
Zy = {1};
Ziyn={r e G|Vy eq,lz,y] € Z;}.
We obtain an ascending sequence of groups
W =24<4242,4---

which is called the upper central series of G. We say that this series terminates at Z* if, for some k,
Zy = Zk+1. The upper central series is a series for G provided it terminates at G. Note that Z;(G) is just
the center of GG; we refer to Z; as the i-th center of G.

(E9.11) Prove that, for all i, Z;i+1/Z; is the center of G/Z;. Deduce that a group is nilpotent if

and only if the upper central series terminates at G. The nilpotency class of a nilpotent group G

1s equal to the length of the upper central series.

(E9.12) Prove that if a prime t divides the order of a finite nilpotent group G, then G has a unique

Sylow t-subgroup. Deduce that G is the direct product of its Sylow subgroups.

Write F(G) for the largest normal nilpotent subgroup of G. We refer to F/(G) as the Fitting subgroup
of G.
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(E9.13) Prove that if G is solvable, then Cq(F(G)) = Z(F(Q)).

9.5. Iwasawa’s Criterion. In this section we give an illustration of how the notion of solvability can be
used in studying simple groups. Specifically, we state a famous lemma of Iwasawa which gives a criterion
for a finite permutation group to be simple. This lemma will be vital when we come to study the finite
classical groups.

Lemma 9.3. (Iwasawa’s criterion) Let G be a finite group acting primitively on a set Q. Let w € Q and
assume that G, has a normal subgroup A which is abelian such that

(A7lgeG)=G
If K <G, either K < Gy or G' < K. In particular if G is perfect and faithful on €2, then G is simple.
(E9.14) Use ITwasawa’s criterion to show that As is simple.

(E9.15) Now use Iwasawa’s criterion to show that A, is simple for n > 5. Hint: consider the
action on unordered triples from {1,...,n}.

Proof. Let K be a normal subgroup of G that is not contained in G ). Lemma 5.2 implies, therefore, that
K acts transitively on Q and hence G = G, K (use the Orbit-Stabilizer Theorem to see this). Thus, for
all g € G, there exists g1 € G,k € K such that g = g1k and this implies, in particular, that

{A9) g G} ={A* | k€ K}.
Now, since (A% | k € K) < AK < G we conclude that G = AK. Then

G/K =AK/K 2 A/JANK.
Since the right hand side is a quotient of an abelian group it must itself be abelian, and we conclude that
G /K is abelian. Hence, by (E9.3), K > G'. O

(E9.16) Prove the following variant on Iwasawa’s criterion: Suppose that G is a finite perfect
group acting faithfully and primitively on a set €2, and suppose that the stabilizer of a point has a
normal soluble subgroup S, whose conjugates generate G. Then G is simple.



