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9. Series

9.1. Composition series and abelian series. Let H ≤ G. A series from H to G is a finite sequence
(Gi)0≤i≤k of subgroups of G, such that

(8) H = G0 �G1 �G2 � · · ·�Gk = G.

We call a sequence a series for G if it is a series from {1} to G.
Consider a series (Gi)0≤i≤k for a group G. We say that the series has length k, and we call it

• a composition series if, for i = 1, . . . , k, Gk/Gk−1 is non-trivial and simple. The abstract group
Gk/Gk−1 is called a composition factor of G.

• an abelian series if for i = 1, . . . , k, Gk/Gk−1 is abelian.
• a normal series if, for i = 1, . . . , k, Gi �G.
• a central series if it is a normal series and, for 1, . . . , k, Gi/Gi−1 is central in G/Gi−1.

Suppose that we have two series from H to G, the first given by (8), the second by:

(9) H = H0 �H1 �H2 � · · ·�Hl = G.

Series (8) and (9) are called equivalent if k = l and there exists a permutation π ∈ Sk such that, for
i = 1, . . . , k,

Gi/Gi−1
∼= Hiπ/Hiπ−1.

The series (9) is said to be a refinement of series (8) if k ≤ l and there are non-negative integers
j0 < j1 < · · · < jk ≤ l such that Gi = Hji for i = 0, . . . , k.
Now the key result concerning series is due to Schreier [Ros94, 7.7]:

Lemma 9.1. Let G be a finite group. Any two series have equivalent refinements.

(E9.1)Prove this. (This is hard.)

A corollary of Lemma 9.1 is the Jordan-Hölder theorem:

Corollary 9.2. If G is finite, then any two composition series are equivalent.

(E9.2)Prove this.

Corollary 9.2 implies, in particular, that the multiset of composition factors associated with any com-
position series of a finite group G is an invariant of G.

9.2. Derived series. For g, h ∈ G, define the commutator of g and h,

[g, h] := g−1h−1gh.

The commutator subgroup, or derived subgroup of G, written G� or [G,G] or G(1), is the group

�[g, h] | g, h ∈ G�.
Warning. G� is the group generated by all commutators of the group G, i.e. the smallest subgroup of

G that contains all commutators. The set of all commutators in G is not necessarily a group.

(E9.3) Prove that, for N a normal subgroup of G, the quotient G/N is abelian if and only if

G� ≤ N .

(E9.4)Find an example of a group G such that G� is not equal to the set of all commutators. (This
is tricky; if you know about free groups, then I’d start there...)

We can generalize this construction as follows.

G(0) := G;

G(n) := [G(n−1), G(n−1)] for n ∈ N.
We obtain a descending sequence of groups

· · ·�G(2) �G(1) �G

which is called the derived series of G. If, for some k, G(k) = G(k+1) then, clearly, G(k) = G(l) for every
l ≥ k and we say that the derived series terminates at G(k). Note that if the derived series does not
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terminate for any k then it is not strictly speaking a series. (Of course the derived series of a finite group
always terminates.)

(E9.5)Prove that (provided it terminates) the derived series is a normal series.

We call G perfect if G = [G,G]. If G is finite, then the derived series terminates after k steps at a perfect
group.

9.3. Solvable groups. We say that G is soluble or solvable if G has an abelian series.

(E9.6)Prove that, if G is finite, then G is solvable if and only if all composition factors of G are

cyclic of prime order. Give an example of a solvable group that does not have a composition series.

(E9.7)Prove that a finite group G is solvable if and only if the derived series of G terminates at

{1}.

9.4. Nilpotent groups. We say that G is nilpotent if G has a central series. The nilpotency class of G is
the minimum integer n for which G has a central series

{1} = G0 < G1 < · · · < Gn.

(E9.8)What is another name for a nilpotent group of class 1?

(E9.9)Prove that a p-group is nilpotent.

Nilpotent groups have two alternative definitions, as the next two exercises will make clear. For two
subgroups H,K ≤ G define

[H,K] = �[h, k] | h ∈ H, k ∈ K�.
Note that this is consistent with our definition of [G,G]. Now define a sequence of groups as follows:

G[0] := G;

G[n] := [G[n−1], G] for n ∈ N.
We obtain a descending sequence of groups

· · ·�G[2] �G[1] �G

which is called the lower central series of G. If, for some k, G[k] = G[k+1] then, clearly, G[k] = G[l] for every
l ≥ k and we say that the lower central series terminates at G[k]. The lower central series is a series for G
provided it terminates at {1}.

(E9.10)A group is nilpotent if and only if the lower central series terminates at {1}. The nilpotency
class of a nilpotent group G is equal to the length of the lower central series.

Define a sequence of groups as follows:

Z0 := {1};
Zi+1 = {x ∈ G | ∀y ∈ G, [x, y] ∈ Zi}.

We obtain an ascending sequence of groups

{1} = Z0 � Z1 � Z2 � · · ·
which is called the upper central series of G. We say that this series terminates at Zk if, for some k,
Zk = Zk+1. The upper central series is a series for G provided it terminates at G. Note that Z1(G) is just
the center of G; we refer to Zi as the i-th center of G.

(E9.11)Prove that, for all i, Zi+1/Zi is the center of G/Zi. Deduce that a group is nilpotent if

and only if the upper central series terminates at G. The nilpotency class of a nilpotent group G

is equal to the length of the upper central series.

(E9.12)Prove that if a prime t divides the order of a finite nilpotent group G, then G has a unique

Sylow t-subgroup. Deduce that G is the direct product of its Sylow subgroups.

Write F (G) for the largest normal nilpotent subgroup of G. We refer to F (G) as the Fitting subgroup
of G.
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(E9.13)Prove that if G is solvable, then CG(F (G)) = Z(F (G)).

9.5. Iwasawa’s Criterion. In this section we give an illustration of how the notion of solvability can be
used in studying simple groups. Specifically, we state a famous lemma of Iwasawa which gives a criterion
for a finite permutation group to be simple. This lemma will be vital when we come to study the finite
classical groups.

Lemma 9.3. (Iwasawa’s criterion) Let G be a finite group acting primitively on a set Ω. Let ω ∈ Ω and
assume that Gω has a normal subgroup A which is abelian such that

�Ag | g ∈ G� = G

If K �G, either K ≤ G(Ω) or G� ≤ K. In particular if G is perfect and faithful on Ω, then G is simple.

(E9.14)Use Iwasawa’s criterion to show that A5 is simple.

(E9.15)Now use Iwasawa’s criterion to show that An is simple for n ≥ 5. Hint: consider the

action on unordered triples from {1, . . . , n}.
Proof. Let K be a normal subgroup of G that is not contained in G(Ω). Lemma 5.2 implies, therefore, that
K acts transitively on Ω and hence G = GωK (use the Orbit-Stabilizer Theorem to see this). Thus, for
all g ∈ G, there exists g1 ∈ Gω, k ∈ K such that g = g1k and this implies, in particular, that

{Ag | g ∈ G} = {Ak | k ∈ K}.
Now, since �Ak | k ∈ K� ≤ AK ≤ G we conclude that G = AK. Then

G/K = AK/K ∼= A/A ∩K.

Since the right hand side is a quotient of an abelian group it must itself be abelian, and we conclude that
G/K is abelian. Hence, by (E9.3), K ≥ G�. �

(E9.16)Prove the following variant on Iwasawa’s criterion: Suppose that G is a finite perfect

group acting faithfully and primitively on a set Ω, and suppose that the stabilizer of a point has a

normal soluble subgroup S, whose conjugates generate G. Then G is simple.


