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Tópicos en la teoŕıa de grupos Examen Parcial 1
I Semestre 2014 Nick Gill

Instructions: You may use any of the results covered in the lecture notes, including in
exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as fully
as possibly, explicitly stating all other results that you use.

(1) Let K be a group. Show that we can define an action of the direct product K×K on the set K by

a(x,y) := x−1ay

for all a ∈ K and (x, y) ∈ K ×K. Show that the action is transitive and find the stabilizer of the
element 1. When is the action faithful?

Answer.
Claim: We have an action.

Proof. Observe, first, that a(1,1) = a for all a ∈ K. Observe, second, that

(a(x1,y1))(x2,y2) = (x−1
1 ay1)(x2,y2) = x−1

2 (x−1
1 ay1)y2

= (x1x2)−1a(y1y2) = a(x1x2,y1y2) = a(x1,y1)(x2,y2)

�

Claim: The action is transitive.

Proof. Let a, b ∈ K. Then a(1,a−1b) = b and we are done. �

The stabilizer of the element 1 is the group

H := {(a, b) ∈ K ×K | a−1 · 1 · b = 1}
= {(a, a) ∈ K ×K}.

Claim: The action is faithful if and only if Z(K) = {1}

Proof. Write L for the kernel of the action and observe that L ≤ H, the stabilizer of 1, described
above. Then

L := {(a, a) | a−1xa = x for all x ∈ K}
= {(a, a) | a ∈ Z(K)}.

The claim follows. �

(2) Describe the conjugacy classes of Alt(6). In particular, calculate the total number of conjugacy
classes, list a representative of each, and calculate the size of each.

Answer. The conjugacy classes of Sym(6) are indexed by the partitions

16, 1421, 1222, 23, 1331, 112131, 32, 1241, 2141, 1151, 61.

Of these, the following partitions correspond to conjugacy classes lying inside Alt(6):

16, 1222, 1331, 32, 2141, 1151.

1



2

We must ascertain which of these split into 2 inside Alt(6). Recall that a conjugacy class C
containing an element g splits in 2 if and only if CSym(6)(g) ≤ Alt(6). Consider each class in
turn:
(16) Clearly this cannot split!

(1222) Consider g = (1, 2)(3, 4). This is centralized by h = (1, 2) 6∈ Alt(6), so the class does not
split.

(1331) Consider g = (1, 2, 3). This is centralized by h = (4, 5) 6∈ Alt(6), so the class does not split.
(32) Consider g = (1, 2, 3)(4, 5, 6). This is centralized by h = (1, 4)(2, 5)(3, 6) 6∈ Alt(6), so the

class does not split.
(2141) Consider g = (1, 2)(3, 4, 5, 6). This is centralized by h = (1, 2) 6∈ Alt(6), so the class does

not split.
(1151) Consider g = (1, 2, 3, 4, 5). The centralizer of g is 〈g〉 < Alt(6), thus this conjugacy class

splits into two.
Let us summarize the results:

Number Cycle type Size of class Representative
1 16 1 (1)
2 1222 45 (1, 2)(3, 4)
3 1331 40 (1, 2, 3)
4 32 40 (1, 2, 3)(4, 5, 6)
5 2141 90 (1, 2)(3, 4, 5, 6)
6 1151 72 (1, 2, 3, 4, 5)
7 1151 72 **

To complete the answer we must find a representative of the final conjugacy class. It must
be an element of type 1151 that is not conjugate to g = (1, 2, 3, 4, 5) in Alt(6). let h be of type
1151. The set of elements in Sym(6) that conjugate g to h is a coset of CG(g), thus they either
all lie in Alt(6), or they all lie in Sym(6) \Alt(6). We can, therefore, take our representative to
be h = gt where t = (1, 2) and we obtain,

h = (1, 2)(1, 2, 3, 4, 5)(1, 2) = (1, 3, 4, 5, 2).

(3) Let k, n be integers with 1 ≤ k ≤ n
2

and let G = Sym(n). Let H be the setwise stabilizer in G of a
set of size k in {1, . . . , n}. Recall that H ∼= Sym(k)× Sym(n− k). Let K := H ∩ Alt(n).
(a) Prove that, if n ≥ 3, then |H : K| = 2.
(b) Prove that, if n ≥ 3 and k = 1, then K = Alt(n− 1).
(c) Prove that, if n ≥ 3 and k > 1, then K ∼= (Alt(k)× Alt(n− k)) o C2.
(d) Assume that n ≥ 8 and describe the socle of K.

Describe H ∩ Alt(n). Describe the socle of H ∩ Alt(n).

Answer.
(a) Claim 1: H contains an odd element g.

Proof. Since n ≥ 3, n− k ≥ 2. Thus Sym(n− k) contains a transposition g2. Thus we can take
g = (1, g2) ∈ Sym(k)× Sym(n− k). �

Claim 2: |H : K| = 2.

Proof. Since |Sym(n) : Alt(n)| = 2, we know that |H : K| ≤ 2. If |H : K| 6= 2, then H = K,
but this contradicts Claim 1 and we are done. �

(b) Suppose that k = 1. Then H ∼= Sym(n− 1) and, since K ≥ Alt(n− 1), Claim 2 implies
that H = Alt(n− 1).
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(c) Suppose that k ≥ 2. It is clear that K > K0 := Alt(k)×Alt(n−k). Thus Claim 2 implies
that |K : K0| = 2. Now let g = (g1, g2) ∈ Sym(k) × Sym(n − k) where g1 and g2 are both
transpositions. Then g 6∈ K0, but g ∈ K, since g is the product of two transpositions. Thus
K = 〈K0, g〉. Furthermore, since |K : K0| = 2, K0 is a normal subgroup of K and we conclude
that K = K0 o 〈g〉.

(d)
(k = 1) Then K = Alt(n− 1), a simple group, and K = soc(K).
(k = 2) Then Alt(k) is trivial and so K0

∼= Alt(n − 2) and K ∼= Sym(n − 2), an almost simple
group. Then soc(K) = K0 = Alt(n− 2).

(k = 3) Then Alt(k) ∼= C3, a simple group and so K0
∼= Alt(3)×Alt(n− 3), is a direct product of

two simple groups, and so must be contained in the socle. Since K is not a direct product
of K0 with C2, we conclude that soc(K) = K0.

(k = 4) Then Alt(k) is not simple. If n ≥ 8, then Alt(n − k) is simple and so soc(K) = K4 ×
Alt(n− k). If n = 8, then soc(K) = K4 ×K4.

(k ≥ 5) Then Alt(k) and Alt(n− k) are both simple and so K0
∼= Alt(k)× Alt(n− 3), is a direct

product of two simple groups, and so must be contained in the socle. Since K is not a
direct product of K0 with C2, we conclude that soc(K) = K0.

(4) Do ONE of the following:
(a) Describe how to construct an exceptional automorphism of Alt(6) (i.e. an automorphism that

is not induced by conjugation by an element of Sym(6)); sketch a proof that the automorphism
you have constructed is indeed exceptional;

(b) Let H and K be groups and suppose that H acts on a set ∆ and K acts on a set Γ.
• Describe K o∆ H;
• Describe the product action of K o∆ H on Γ∆;
• Prove that if K acts primitively but not regularly on Γ, if ∆ is finite, and if H acts

transitively on ∆, then the product action is primitive.

Answer. This is book work, so an answer will not be provided.

(5) (a) Let Ω = {1, . . . , 6} and let G be the unique subgroup of Sym(6) such that
• G is isomorphic to Sym(2) o Sym(3); and
• there is a G-congruence ∼ with associated blocks

B1 = {1, 2}, B2 = {3, 4} and B3 = {5, 6}.

Prove that G is maximal in Sym(6).
(b) More generally, suppose that H is a subgroup of Sym(n) such that

• H is isomorphic to Sym(k) o Sym(`) for some integers k, l ≥ 2; and
• there is a H-congruence ∼ with ` associated blocks each of size k.

Prove that H is maximal in Sym(n).

Answer. (a) This could be a corollary of (b), but here is a direct proof. Suppose that
G > M > Sym(6). The group G has index 15 in Sym(6), thus M must have index 5 or 3. Now
the action of Sym(6) on the cosets of M is transitive and has an associated homomorphism
φ : Sym(6)→ Sym(k) where 3 ≤ k ≤ 5. This action cannot be faithful (by considering orders),
and the only non-trivial subgroups of Sym(6) are Alt(6) and Sym(6). But if either of these were
the kernel of φ, then the image of φ would have order at most 2, in particular this image could
not be a transitive subgroup of Sym(k). We are done.
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(b) The group H is clearly transitive, so cannot lie inside an intransitive group Sym(k) ×
Sym(n − k). On the other hand H contains a transposition, so (by a result in exercises) the
only primitive subgroup that contains H is Sym(n).

Thus, if M is a subgroup such that H < M < Sym(n), then M is imprimitive. Suppose that
∼′ is a non-trivial M -congruence and let B′ be an associated block.

Claim: B′ is a union of blocks associated with ∼.

Proof. Suppose not. Then there is a pair g, h ∈ Ω such that g ∼ h, g ∈ B′ and h 6∈ B′. Now G
contains the tranposition (g, h) and so must move the block B′. But this implies that |B′| = 1
which is a contradiction. �

Claim: B′ is a block for ∼.

Proof. Suppose not. Then there are two distinct ∼-blocks B1 and B2 inside B′. Let B3 be a
∼-block that is not in B′. Now G contains an element that fixes all elements of B1 and sends
all elements of B1 to B2. This is a contradiction. �

Since B′ was arbitrary, we conclude that all blocks for∼′ are blocks for∼. But this means that
∼=∼′. Then (by lectures) M is a subgruop of a group isomorphic to G which is a contradiction.

(6) Let Ω = {1, . . . , 6} and let G be the unique subgroup of Sym(6) such that
• G is isomorphic to Sym(2) o Sym(3); and
• there is a G-congruence ∼ with associated blocks

B1 = {1, 2}, B2 = {3, 4} and B3 = {5, 6}.
(a) Write down a set of permutations that generate G.
(b) Let Z(G) be the centre of G; show that |Z(G)| = 2 and write down the unique g ∈ Z(G)\{1}.

A partition of Ω is a set of disjoint subsets of Ω whose union is equal to Ω. Observe that λ :=
{B1, B2, B3} is a partition of Ω. Let µ be another partition of Ω; we say that µ is orthogonal to λ
if µ contains two sets C1, C2 each of size 3 and, for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2, |Bi ∩ Cj| = 1.
(c) Write down the four partitions of Ω that are orthogonal to λ. Call the set of these four

partitions λ⊥.
(d) Show that G acts on λ⊥ via{

{C11, C12, C13}, {C21, C22, C23}
}g

=
{
{Cg

11, C
g
12, C

g
13}, {C

g
21, C

g
22, C

g
23}

}
where g ∈ G and C11, C12, C13, C21, C22, C23 ∈ {1, . . . , 6}.

(e) Let φ : G→ Sym(4) be the homomorphism associated with the action of G on λ⊥. Show that
• φ((1, 3, 5)(2, 4, 6)) is a 3-cycle;
• φ((1, 2)(3, 5, 4, 6)) is a 4-cycle.

(f) Prove that if g is any 3-cycle in Sym(4) and h is any 4-cycle in Sym(4), then 〈g, h〉 = Sym(4).
Conclude that G/Z(G) ∼= Sym(4).

(g) Describe G ∩ Alt(6) and prove that G ∼= Z(G)× Sym(4).

Answer. It is convenient to set some notation. We let
B = 〈(1, 2), (3, 4), (5, 6)〉,
h = (1, 3, 5)(2, 4, 6), H =〉h, (1, 3)(2, 4)〉.

Recall that B is a normal subgroup of G that is isomorphic to Sym(2) × Sym(2) × Sym(2).
Recall that H ∼= Sym(3) and that G = B oH.

(a) There are many possibilities for this. For instance

G = 〈(1, 2), (3, 4), (5, 6), (1, 3)(2, 4), (1, 5)(2, 6)〉.
(In fact you could miss out (3, 4) and (5, 6) if you wanted.)
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(b) The element g = (1, 2)(3, 4)(5, 6) is central. We need to show that Z(G) = {1, g}. Recall
that every element of G can be written uniquely as bh for some b ∈ B and h ∈ H. Consider an
element bh ∈ Z(G).

Since H ∼= Sym(3) has trivial centre, we conclude that if bh ∈ Z(G), then h = 1. Now let
b = (b1, b2, b3) ∈ Sym(2)× Sym(2)× Sym(2). If the bi are not all identical, then bh 6= hb. The
result follows.

(c)

A :=
{
{1, 3, 5}, {2, 4, 6}

}
,B :=

{
{1, 3, 6}, {2, 4, 5}

}
C :=

{
{1, 4, 5}, {2, 3, 6}

}
,D :=

{
{1, 4, 6}, {2, 3, 5}

}
(d) We need to check that if g ∈ G and µ ∈ λ⊥, then µg ∈ λ⊥. Once this is done, the two

axioms are a formality. So, let µ = {C1, C2}. It is obvious that µg is a set consisting of two
subsets, each of size 3 that partition {1, . . . , 6}. Now observe that

|Cg
i ∩Bj| = |Ci ∩Bg−1

j | = |Ci ∩Bk| = 1,

as required. (Here we write Bk for Bg−1

j and we use the fact that G preserves the set of blocks
of ∼.)

(e) Using the notation of (c) we confirm that

φ((1, 3, 5)(2, 4, 6)) = (B,C,D)

φ((1, 2)(3, 5, 4, 6)) = (A,B,D,C).

(f) Let H = 〈g, h〉. Since g has order 3 and h has order 4 we know that H has order 12 or
24. We assume that |H| = 12 and prove a contradiction. Observe that CSym(4)(g) = 〈g〉 In

particular g, gh, gh
2
, gh

3
are all distinct. One can check, in addition, that these are all distinct

from g−1. We conclude that H contains all eight 3-cycles that are contained in Sym(4). On the
other hand NSym(4)(〈h〉) is group of order 8. Thus, in particular hg is an order 4 element outside
〈h〉. Counting elements we find that we have at least 13 elements in H and we are done.

This result implies that the homomorphism φ : G→ Sym(4) is surjective (since it contains a
3-cycle and a 4-cycle in its image). Thus we must show that ker(φ) = Z(G). Since, by order
considerations, we know that | ker(φ)| = 2, it is enough to show that g = (1, 2)(3, 4)(5, 6) lies
in the kernel of φ. One checks directly that

Ag = A,Bg = B,Cg = C and Dg = D.

(g) Let K = G ∩ Alt(6) and let g be the non-identity element in Z(G). Since g ∈ K and
g 6∈ Alt(6), we conclude that K is a proper subgroup of G; indeed it is a subgroup of index 2
and order 24.

Observe next that the two elements listed in (c) both lie in K. Thus, by restricting the action
of G on λ⊥ to K we obtain an action whose associated homomorphism is onto Sym(4). Since
|Sym(4)| = 24 we conclude that φ is an isomorphism and K ∼= Sym(24). Now K ∩Z(G) = {1},
both K and Z(G) are normal subgroups of G, and so G ≥ K ×Z(G). Checking orders we find
that G = K × Z(G) ∼= Sym(2)× Sym(4), as required.

(7) The last question concerns some properties of p-groups, i.e. finite groups G, such that |G| = pa for
some prime p and positive integer a.
(a) Let G and H be finite p-groups, for some prime p. Suppose that G acts on H as an object

from Group. Define

Fix(G) := {h ∈ H | hg = h for all g ∈ G}.

Prove that Fix(G) is a non-trivial subgroup of H.
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(b) Let G be a group with a finite normal subgroup K and let P be a Sylow p-subgroup of K.
Show that G = KNG(P ).

(c) Let G be a transitive subgroup of Sym(pkm) where p is a prime, and k and m are positive
integers. Show that if P is a Sylow p-subgroup of G, then each orbit of P has size at least pk.

Answer. (a) Suppose that h1, h2 ∈ Fix(G) and let g ∈ G. Observe that

1 = 1g = (h1 · h−1
1 )g = hg1 · (h−1

1 )g = h1 · (h−1
1 )g.

Thus we conclude that (h−1
1 )g = h−1

1 and so h−1
1 ∈ Fix(G). Similarly

(h1 · h2)g = hg1 · h
g
2 = h1 · h2

and so h1 · h2 ∈ Fix(G). We conclude that Fix(G) is a subgroup of G.
Now consider the set of orbits associated with the action of G on H. All of these orbits have

order divisible by p, except those in Fix(G). Since the orbits partition H, if Fix(G) were trivial,
this would imply that |H| ≡ 1 (mod p), a contradiction.

(b) G acts by conjugation on Ω, the set of Sylow p-subgroups of G. This action is transitive;
indeed if we restrict this action and consider only the action of K on Ω, then it is already
transitive.

If P ∈ Ω, then the stabilizer of P in G is NG(P ). Furthermore, for every g ∈ G, the coset
NG(P )g consists of the set of elements h in G such that P h = P g. Since K is transitive, we
conclude that K contains an element in every coset NG(P )g and so, in particular NG(P )K = G.

(c) If a Sylow p-subgroup P has an orbit of size less than pk, then there is an element ω ∈ Ω
such that the stabilizer Pω has order greater than |P |/pk. Since Pω ≤ Gω, this implies, in
particular that |G|/|Gω is not divisible by pk. But, since G is transitive, this contradicts the
Orbit-Stabilizer theorem.


