Instructions: You may use any of the results covered in the lecture notes, including in exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as fully as possibly, explicitly stating all other results that you use.

(1) Let K be a group. Show that we can define an action of the direct product $K \times K$ on the set K by

 $a^{(x,y)} := x^{-1}ay$

for all $a \in K$ and $(x, y) \in K \times K$. Show that the action is transitive and find the stabilizer of the element 1. When is the action faithful?

Answer. Claim: We have an action.

Proof. Observe, first, that
$$a^{(1,1)} = a$$
 for all $a \in K$. Observe, second, that $(a^{(x_1,y_1)})^{(x_2,y_2)} = (x_1^{-1}ay_1)^{(x_2,y_2)} = x_2^{-1}(x_1^{-1}ay_1)y_2$

Claim: The action is transitive.

Proof. Let $a, b \in K$. Then $a^{(1,a^{-1}b)} = b$ and we are done.

The stabilizer of the element 1 is the group

$$H := \{ (a, b) \in K \times K \mid a^{-1} \cdot 1 \cdot b = 1 \}$$

= $\{ (a, a) \in K \times K \}.$

Claim: The action is faithful if and only if $Z(K) = \{1\}$

Proof. Write L for the kernel of the action and observe that $L \leq H$, the stabilizer of 1, described above. Then

$$L := \{ (a, a) \mid a^{-1}xa = x \text{ for all } x \in K \}$$

= $\{ (a, a) \mid a \in Z(K) \}.$

The claim follows.

(2) Describe the conjugacy classes of Alt(6). In particular, calculate the total number of conjugacy classes, list a representative of each, and calculate the size of each.

Answer. The conjugacy classes of Sym(6) are indexed by the partitions $1^{6}, 1^{4}2^{1}, 1^{2}2^{2}, 2^{3}, 1^{3}3^{1}, 1^{1}2^{1}3^{1}, 3^{2}, 1^{2}4^{1}, 2^{1}4^{1}, 1^{1}5^{1}, 6^{1}.$ Of these, the following partitions correspond to conjugacy classes lying inside Alt(6): $1^{6}, 1^{2}2^{2}, 1^{3}3^{1}, 3^{2}, 2^{1}4^{1}, 1^{1}5^{1}.$ We must ascertain which of these split into 2 inside Alt(6). Recall that a conjugacy class C containing an element g splits in 2 if and only if $C_{\text{Sym}(6)}(g) \leq \text{Alt}(6)$. Consider each class in turn:

 (1^6) Clearly this cannot split!

- (1^22^2) Consider g = (1,2)(3,4). This is centralized by $h = (1,2) \notin Alt(6)$, so the class does not split.
- (1^33^1) Consider g = (1, 2, 3). This is centralized by $h = (4, 5) \notin Alt(6)$, so the class does not split.
- (3²) Consider g = (1, 2, 3)(4, 5, 6). This is centralized by $h = (1, 4)(2, 5)(3, 6) \notin Alt(6)$, so the class does not split.
- (2¹4¹) Consider g = (1, 2)(3, 4, 5, 6). This is centralized by $h = (1, 2) \notin Alt(6)$, so the class does not split.
- $(1^{1}5^{1})$ Consider g = (1, 2, 3, 4, 5). The centralizer of g is $\langle g \rangle < \text{Alt}(6)$, thus this conjugacy class splits into two.

Let us summarize the results:

Number	Cycle type	Size of class	Representative
1	1^{6}	1	(1)
2	$1^{2}2^{2}$	45	(1,2)(3,4)
3	$1^{3}3^{1}$	40	(1, 2, 3)
4	3^{2}	40	(1, 2, 3)(4, 5, 6)
5	$2^{1}4^{1}$	90	(1,2)(3,4,5,6)
6	$1^{1}5^{1}$	72	(1, 2, 3, 4, 5)
7	$1^{1}5^{1}$	72	**

To complete the answer we must find a representative of the final conjugacy class. It must be an element of type $1^{1}5^{1}$ that is not conjugate to g = (1, 2, 3, 4, 5) in Alt(6). let h be of type $1^{1}5^{1}$. The set of elements in Sym(6) that conjugate g to h is a coset of $C_G(g)$, thus they either all lie in Alt(6), or they all lie in Sym(6) \ Alt(6). We can, therefore, take our representative to be $h = g^t$ where t = (1, 2) and we obtain,

$$h = (1, 2)(1, 2, 3, 4, 5)(1, 2) = (1, 3, 4, 5, 2).$$

- (3) Let k, n be integers with $1 \le k \le \frac{n}{2}$ and let G = Sym(n). Let H be the setwise stabilizer in G of a set of size k in $\{1, \ldots, n\}$. Recall that $H \cong \text{Sym}(k) \times \text{Sym}(n-k)$. Let $K := H \cap \text{Alt}(n)$.
 - (a) Prove that, if $n \ge 3$, then |H:K| = 2.
 - (b) Prove that, if $n \ge 3$ and k = 1, then K = Alt(n-1).
 - (c) Prove that, if $n \ge 3$ and k > 1, then $K \cong (Alt(k) \times Alt(n-k)) \rtimes C_2$.
 - (d) Assume that $n \ge 8$ and describe the socle of K.

Describe $H \cap \operatorname{Alt}(n)$. Describe the socle of $H \cap \operatorname{Alt}(n)$.

Answer.

(a) Claim 1: H contains an odd element g.

Proof. Since $n \ge 3$, $n - k \ge 2$. Thus $\operatorname{Sym}(n - k)$ contains a transposition g_2 . Thus we can take $g = (1, g_2) \in \operatorname{Sym}(k) \times \operatorname{Sym}(n - k)$.

Claim 2: |H:K| = 2.

Proof. Since |Sym(n) : Alt(n)| = 2, we know that $|H : K| \le 2$. If $|H : K| \ne 2$, then H = K, but this contradicts Claim 1 and we are done.

(b) Suppose that k = 1. Then $H \cong \text{Sym}(n-1)$ and, since $K \ge \text{Alt}(n-1)$, Claim 2 implies that H = Alt(n-1).

(c) Suppose that $k \ge 2$. It is clear that $K > K_0 := \operatorname{Alt}(k) \times \operatorname{Alt}(n-k)$. Thus Claim 2 implies that $|K : K_0| = 2$. Now let $g = (g_1, g_2) \in \operatorname{Sym}(k) \times \operatorname{Sym}(n-k)$ where g_1 and g_2 are both transpositions. Then $g \notin K_0$, but $g \in K$, since g is the product of two transpositions. Thus $K = \langle K_0, g \rangle$. Furthermore, since $|K : K_0| = 2$, K_0 is a normal subgroup of K and we conclude that $K = K_0 \rtimes \langle g \rangle$.

- (d)
- (k = 1) Then K = Alt(n 1), a simple group, and K = soc(K).
- (k = 2) Then Alt(k) is trivial and so $K_0 \cong \text{Alt}(n-2)$ and $K \cong \text{Sym}(n-2)$, an almost simple group. Then $\text{soc}(K) = K_0 = \text{Alt}(n-2)$.
- (k = 3) Then Alt $(k) \cong C_3$, a simple group and so $K_0 \cong Alt(3) \times Alt(n 3)$, is a direct product of two simple groups, and so must be contained in the socle. Since K is not a direct product of K_0 with C_2 , we conclude that $soc(K) = K_0$.
- (k = 4) Then Alt(k) is not simple. If $n \ge 8$, then Alt(n k) is simple and so $soc(K) = K_4 \times Alt(n k)$. If n = 8, then $soc(K) = K_4 \times K_4$.
- $(k \ge 5)$ Then Alt(k) and Alt(n k) are both simple and so $K_0 \cong Alt(k) \times Alt(n 3)$, is a direct product of two simple groups, and so must be contained in the socle. Since K is not a direct product of K_0 with C_2 , we conclude that $soc(K) = K_0$.

(4) Do **ONE** of the following:

- (a) Describe how to construct an exceptional automorphism of Alt(6) (i.e. an automorphism that is not induced by conjugation by an element of Sym(6)); sketch a proof that the automorphism you have constructed is indeed exceptional;
- (b) Let H and K be groups and suppose that H acts on a set Δ and K acts on a set Γ .
 - Describe $K \wr_{\Delta} H$;
 - Describe the product action of $K \wr_{\Delta} H$ on Γ^{Δ} ;
 - Prove that if K acts primitively but not regularly on Γ , if Δ is finite, and if H acts transitively on Δ , then the product action is primitive.

Answer. This is book work, so an answer will not be provided.

- (5) (a) Let $\Omega = \{1, \ldots, 6\}$ and let G be the unique subgroup of Sym(6) such that
 - G is isomorphic to $\text{Sym}(2) \wr \text{Sym}(3)$; and
 - there is a G-congruence \sim with associated blocks

 $B_1 = \{1, 2\}, B_2 = \{3, 4\}$ and $B_3 = \{5, 6\}.$

Prove that G is maximal in Sym(6).

- (b) More generally, suppose that H is a subgroup of Sym(n) such that
 - *H* is isomorphic to $\text{Sym}(k) \wr \text{Sym}(\ell)$ for some integers $k, l \ge 2$; and
 - there is a *H*-congruence \sim with ℓ associated blocks each of size *k*.
 - Prove that H is maximal in Sym(n).

Answer. (a) This could be a corollary of (b), but here is a direct proof. Suppose that G > M > Sym(6). The group G has index 15 in Sym(6), thus M must have index 5 or 3. Now the action of Sym(6) on the cosets of M is transitive and has an associated homomorphism $\phi : \text{Sym}(6) \to \text{Sym}(k)$ where $3 \le k \le 5$. This action cannot be faithful (by considering orders), and the only non-trivial subgroups of Sym(6) are Alt(6) and Sym(6). But if either of these were the kernel of ϕ , then the image of ϕ would have order at most 2, in particular this image could not be a transitive subgroup of Sym(k). We are done.

(b) The group H is clearly transitive, so cannot lie inside an intransitive group $\text{Sym}(k) \times \text{Sym}(n-k)$. On the other hand H contains a transposition, so (by a result in exercises) the only primitive subgroup that contains H is Sym(n).

Thus, if M is a subgroup such that H < M < Sym(n), then M is imprimitive. Suppose that \sim' is a non-trivial M-congruence and let B' be an associated block.

Claim: B' is a union of blocks associated with \sim .

Proof. Suppose not. Then there is a pair $g, h \in \Omega$ such that $g \sim h, g \in B'$ and $h \notin B'$. Now G contains the transposition (g, h) and so must move the block B'. But this implies that |B'| = 1 which is a contradiction.

Claim: B' is a block for \sim .

Proof. Suppose not. Then there are two distinct \sim -blocks B_1 and B_2 inside B'. Let B_3 be a \sim -block that is not in B'. Now G contains an element that fixes all elements of B_1 and sends all elements of B_1 to B_2 . This is a contradiction.

Since B' was arbitrary, we conclude that all blocks for \sim' are blocks for \sim . But this means that $\sim = \sim'$. Then (by lectures) M is a subgruop of a group isomorphic to G which is a contradiction.

(6) Let $\Omega = \{1, \ldots, 6\}$ and let G be the unique subgroup of Sym(6) such that

- G is isomorphic to $\text{Sym}(2) \wr \text{Sym}(3)$; and
- there is a G-congruence \sim with associated blocks

 $B_1 = \{1, 2\}, B_2 = \{3, 4\}$ and $B_3 = \{5, 6\}.$

(a) Write down a set of permutations that generate G.

(b) Let Z(G) be the centre of G; show that |Z(G)| = 2 and write down the unique $g \in Z(G) \setminus \{1\}$. A partition of Ω is a set of disjoint subsets of Ω whose union is equal to Ω . Observe that $\lambda := \{B_1, B_2, B_3\}$ is a partition of Ω . Let μ be another partition of Ω ; we say that μ is orthogonal to λ if μ contains two sets C_1, C_2 each of size 3 and, for all $1 \leq i \leq 3$ and $1 \leq j \leq 2$, $|B_i \cap C_j| = 1$.

- (c) Write down the four partitions of Ω that are orthogonal to λ . Call the set of these four partitions λ^{\perp} .
- (d) Show that G acts on λ^{\perp} via

$$\left\{\{C_{11}, C_{12}, C_{13}\}, \{C_{21}, C_{22}, C_{23}\}\right\}^g = \left\{\{C_{11}^g, C_{12}^g, C_{13}^g\}, \{C_{21}^g, C_{22}^g, C_{23}^g\}\right\}$$

where $g \in G$ and $C_{11}, C_{12}, C_{13}, C_{21}, C_{22}, C_{23} \in \{1, \dots, 6\}.$

- (e) Let $\phi: G \to \text{Sym}(4)$ be the homomorphism associated with the action of G on λ^{\perp} . Show that • $\phi((1,3,5)(2,4,6))$ is a 3-cycle;
 - $\psi((1, 3, 5)(2, 4, 6))$ is a 3-cycle,
 - $\phi((1,2)(3,5,4,6))$ is a 4-cycle.
- (f) Prove that if g is any 3-cycle in Sym(4) and h is any 4-cycle in Sym(4), then $\langle g, h \rangle =$ Sym(4). Conclude that $G/Z(G) \cong$ Sym(4).
- (g) Describe $G \cap Alt(6)$ and prove that $G \cong Z(G) \times Sym(4)$.

Answer. It is convenient to set some notation. We let

 $B = \langle (1,2), (3,4), (5,6) \rangle,$

$$h = (1, 3, 5)(2, 4, 6), H = h, (1, 3)(2, 4)$$

Recall that B is a normal subgroup of G that is isomorphic to $\text{Sym}(2) \times \text{Sym}(2) \times \text{Sym}(2)$. Recall that $H \cong \text{Sym}(3)$ and that $G = B \rtimes H$.

(a) There are many possibilities for this. For instance

 $G = \langle (1,2), (3,4), (5,6), (1,3)(2,4), (1,5)(2,6) \rangle.$

(In fact you could miss out (3, 4) and (5, 6) if you wanted.)

(b) The element g = (1, 2)(3, 4)(5, 6) is central. We need to show that $Z(G) = \{1, g\}$. Recall that every element of G can be written uniquely as bh for some $b \in B$ and $h \in H$. Consider an element $bh \in Z(G)$.

Since $H \cong \text{Sym}(3)$ has trivial centre, we conclude that if $bh \in Z(G)$, then h = 1. Now let $b = (b_1, b_2, b_3) \in \text{Sym}(2) \times \text{Sym}(2) \times \text{Sym}(2)$. If the b_i are not all identical, then $bh \neq hb$. The result follows.

(c)

$$A := \left\{ \{1, 3, 5\}, \{2, 4, 6\} \right\}, B := \left\{ \{1, 3, 6\}, \{2, 4, 5\} \right\}$$
$$C := \left\{ \{1, 4, 5\}, \{2, 3, 6\} \right\}, D := \left\{ \{1, 4, 6\}, \{2, 3, 5\} \right\}$$

(d) We need to check that if $g \in G$ and $\mu \in \lambda^{\perp}$, then $\mu^g \in \lambda^{\perp}$. Once this is done, the two axioms are a formality. So, let $\mu = \{C_1, C_2\}$. It is obvious that μ^g is a set consisting of two subsets, each of size 3 that partition $\{1, \ldots, 6\}$. Now observe that

$$|C_i^g \cap B_j| = |C_i \cap B_j^{g^{-1}}| = |C_i \cap B_k| = 1,$$

as required. (Here we write B_k for $B_j^{g^{-1}}$ and we use the fact that G preserves the set of blocks of \sim .)

(e) Using the notation of (c) we confirm that

$$\phi((1,3,5)(2,4,6)) = (B,C,D)$$

$$\phi((1,2)(3,5,4,6)) = (A,B,D,C).$$

(f) Let $H = \langle g, h \rangle$. Since g has order 3 and h has order 4 we know that H has order 12 or 24. We assume that |H| = 12 and prove a contradiction. Observe that $C_{\text{Sym}(4)}(g) = \langle g \rangle$ In particular g, g^h, g^{h^2}, g^{h^3} are all distinct. One can check, in addition, that these are all distinct from g^{-1} . We conclude that H contains all eight 3-cycles that are contained in Sym(4). On the other hand $N_{\text{Sym}(4)}(\langle h \rangle)$ is group of order 8. Thus, in particular h^g is an order 4 element outside $\langle h \rangle$. Counting elements we find that we have at least 13 elements in H and we are done.

This result implies that the homomorphism $\phi: G \to \text{Sym}(4)$ is surjective (since it contains a 3-cycle and a 4-cycle in its image). Thus we must show that $\ker(\phi) = Z(G)$. Since, by order considerations, we know that $|\ker(\phi)| = 2$, it is enough to show that g = (1, 2)(3, 4)(5, 6) lies in the kernel of ϕ . One checks directly that

$$A^{g} = A, B^{g} = B, C^{g} = C$$
 and $D^{g} = D$.

(g) Let $K = G \cap Alt(6)$ and let g be the non-identity element in Z(G). Since $g \in K$ and $g \notin Alt(6)$, we conclude that K is a proper subgroup of G; indeed it is a subgroup of index 2 and order 24.

Observe next that the two elements listed in (c) both lie in K. Thus, by restricting the action of G on λ^{\perp} to K we obtain an action whose associated homomorphism is onto Sym(4). Since |Sym(4)| = 24 we conclude that ϕ is an isomorphism and $K \cong \text{Sym}(24)$. Now $K \cap Z(G) = \{1\}$, both K and Z(G) are normal subgroups of G, and so $G \ge K \times Z(G)$. Checking orders we find that $G = K \times Z(G) \cong \text{Sym}(2) \times \text{Sym}(4)$, as required.

- (7) The last question concerns some properties of *p*-groups, i.e. finite groups G, such that $|G| = p^a$ for some prime p and positive integer a.
 - (a) Let G and H be finite p-groups, for some prime p. Suppose that G acts on H as an object from **Group**. Define

$$Fix(G) := \{ h \in H \mid h^g = h \text{ for all } g \in G \}.$$

Prove that Fix(G) is a non-trivial subgroup of H.

- (b) Let G be a group with a finite normal subgroup K and let P be a Sylow p-subgroup of K. Show that $G = KN_G(P)$.
- (c) Let G be a transitive subgroup of $\text{Sym}(p^k m)$ where p is a prime, and k and m are positive integers. Show that if P is a Sylow p-subgroup of G, then each orbit of P has size at least p^k .

Answer. (a) Suppose that $h_1, h_2 \in Fix(G)$ and let $g \in G$. Observe that

$$1 = 1^{g} = (h_{1} \cdot h_{1}^{-1})g = h_{1}^{g} \cdot (h_{1}^{-1})^{g} = h_{1} \cdot (h_{1}^{-1})^{g}.$$

Thus we conclude that $(h_1^{-1})^g = h_1^{-1}$ and so $h_1^{-1} \in Fix(G)$. Similarly

$$(h_1 \cdot h_2)^g = h_1^g \cdot h_2^g = h_1 \cdot h_2$$

and so $h_1 \cdot h_2 \in Fix(G)$. We conclude that Fix(G) is a subgroup of G.

Now consider the set of orbits associated with the action of G on H. All of these orbits have order divisible by p, except those in Fix(G). Since the orbits partition H, if Fix(G) were trivial, this would imply that $|H| \equiv 1 \pmod{p}$, a contradiction.

(b) G acts by conjugation on Ω , the set of Sylow *p*-subgroups of G. This action is transitive; indeed if we restrict this action and consider only the action of K on Ω , then it is already transitive.

If $P \in \Omega$, then the stabilizer of P in G is $N_G(P)$. Furthermore, for every $g \in G$, the coset $N_G(P)g$ consists of the set of elements h in G such that $P^h = P^g$. Since K is transitive, we conclude that K contains an element in every coset $N_G(P)g$ and so, in particular $N_G(P)K = G$.

(c) If a Sylow *p*-subgroup *P* has an orbit of size less than p^k , then there is an element $\omega \in \Omega$ such that the stabilizer P_{ω} has order greater than $|P|/p^k$. Since $P_{\omega} \leq G_{\omega}$, this implies, in particular that $|G|/|G_{\omega}$ is not divisible by p^k . But, since *G* is transitive, this contradicts the Orbit-Stabilizer theorem.