UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA
Topicos en la teoria de grupos Examen Parcial 1
I Semestre 2014 Nick Gill

Instructions: You may use any of the results covered in the lecture notes, including in
exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as fully
as possibly, explicitly stating all other results that you use.

(1) Let K be a group. Show that we can define an action of the direct product K x K on the set K by
al ™) = z tay

for all a € K and (z,y) € K x K. Show that the action is transitive and find the stabilizer of the
element 1. When is the action faithful?

Answer.
Claim: We have an action.

Proof. Observe, first, that ") = a for all @ € K. Observe, second, that
(atrrom) 282 = (g tay,)20) = gyt (o ay)ys

— ($1$2)_1a(y1y2) — a(x1x27yly2) — a(xlayl)(z27y2)

Claim: The action is transitive.

Proof. Let a,b € K. Then a™*™'? = b and we are done. 0

The stabilizer of the element 1 is the group
H:={(a,b)c KxK|at'1-b=1}
= {(a,a) € K x K}.
Claim: The action is faithful if and only if Z(K) = {1}

Proof. Write L for the kernel of the action and observe that L < H, the stabilizer of 1, described

above. Then
L:={(a,a)|a'za=x for all x € K}

={(a,a) | a € Z(K)}.
The claim follows. U

(2) Describe the conjugacy classes of Alt(6). In particular, calculate the total number of conjugacy
classes, list a representative of each, and calculate the size of each.

Answer. The conjugacy classes of Sym(6) are indexed by the partitions
19,1121 1722 2%, 1731 112'3", 3% 1741 214" 15" 6.
Of these, the following partitions correspond to conjugacy classes lying inside Alt(6):
19,1722, 1°3", 3%, 214" 1'5".
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We must ascertain which of these split into 2 inside Alt(6). Recall that a conjugacy class C'
containing an element g splits in 2 if and only if Csym(e)(g9) < Alt(6). Consider each class in
turn:
(1%) Clearly this cannot split!
(1222) Consider g = (1,2)(3,4). This is centralized by h = (1,2) & Alt(6), so the class does not
split.
(133') Consider g = (1,2, 3). This is centralized by h = (4,5) & Alt(6), so the class does not split.
(3%) Consider g = (1,2,3)(4,5,6). This is centralized by h = (1,4)(2,5)(3,6) & Alt(6), so the
class does not split.
(2'4') Consider g = (1,2)(3,4,5,6). This is centralized by h = (1,2) ¢ Alt(6), so the class does
not split.
(1'5') Consider g = (1,2,3,4,5). The centralizer of g is (g) < Alt(6), thus this conjugacy class
splits into two.
Let us summarize the results:

Number | Cycle type | Size of class | Representative
1 16 1 (1)
2 1292 45 (1,2)(3,4)
3 133! 40 (1,2,3)
4 32 40 (1,2,3)(4,5,6)
5 2141 90 (1,2)(3,4,5,6)
6 115! 72 (1,2,3,4,5)
7 115! 72 ok

To complete the answer we must find a representative of the final conjugacy class. It must
be an element of type 15! that is not conjugate to g = (1,2, 3,4,5) in Alt(6). let h be of type
1'5!. The set of elements in Sym(6) that conjugate g to h is a coset of Cg(g), thus they either
all lie in Alt(6), or they all lie in Sym(6) \ Alt(6). We can, therefore, take our representative to
be h = ¢g" where t = (1,2) and we obtain,

h=(1,2)(1,2,3,4,5)(1,2) = (1,3,4,5,2).

(3) Let k,n be integers with 1 <% < % and let G = Sym(n). Let H be the setwise stabilizer in G of a
set of size k in {1,...,n}. Recall that H = Sym(k) x Sym(n — k). Let K := H N Alt(n).

(a) Prove that, if n > 3, then |H : K| = 2.

(b) Prove that, if n > 3 and k = 1, then K = Alt(n — 1).

(c) Prove that, if n > 3 and k > 1, then K = (Alt(k) x Alt(n — k)) x Cs.
(d) Assume that n > 8 and describe the socle of K.

Describe H N Alt(n). Describe the socle of H N Alt(n).

Answer.
(a) Claim 1: H contains an odd element g.

Proof. Since n > 3, n—k > 2. Thus Sym(n — k) contains a transposition g,. Thus we can take
g=(1,92) € Sym(k) x Sym(n — k). O

Claim 2: |H : K| =2,
Proof. Since |Sym(n) : Alt(n)| = 2, we know that |H : K| < 2. If |H : K| # 2, then H = K,
but this contradicts Claim 1 and we are done. 0
(b) Suppose that k = 1. Then H = Sym(n — 1) and, since K > Alt(n — 1), Claim 2 implies
that H = Alt(n — 1).




(c) Suppose that k > 2. It is clear that K > K := Alt(k) x Alt(n — k). Thus Claim 2 implies
that |K : Ko| = 2. Now let ¢ = (¢g1,92) € Sym(k) x Sym(n — k) where g; and g, are both
transpositions. Then g ¢ Ky, but g € K, since g is the product of two transpositions. Thus
K = (K, g). Furthermore, since |K : Ky| = 2, Ky is a normal subgroup of K and we conclude
that K = K(] X <g>

(d)

(k=1) Then K = Alt(n — 1), a simple group, and K = soc(K).

(k =2) Then Alt(k) is trivial and so Ky = Alt(n — 2) and K = Sym(n — 2), an almost simple
group. Then soc(K) = Ky = Alt(n — 2).

(k = 3) Then Alt(k) = (5, a simple group and so Ky = Alt(3) x Alt(n — 3), is a direct product of
two simple groups, and so must be contained in the socle. Since K is not a direct product
of Ky with Cy, we conclude that soc(K) = K.

(k =4) Then Alt(k) is not simple. If n > 8, then Alt(n — k) is simple and so soc(K) = K, X
Alt(n — k). If n =8, then soc(K) = Ky x Kj.

(k > 5) Then Alt(k) and Alt(n — k) are both simple and so Ky = Alt(k) x Alt(n — 3), is a direct
product of two simple groups, and so must be contained in the socle. Since K is not a
direct product of K, with Cy, we conclude that soc(K) = K.

(4) Do ONE of the following:

(a) Describe how to construct an exceptional automorphism of Alt(6) (i.e. an automorphism that
is not induced by conjugation by an element of Sym(6)); sketch a proof that the automorphism
you have constructed is indeed exceptional;

(b) Let H and K be groups and suppose that H acts on a set A and K acts on a set I

e Describe K a H;

e Describe the product action of K 1a H on I'?®;

e Prove that if K acts primitively but not regularly on I', if A is finite, and if H acts
transitively on A, then the product action is primitive.

Answer. This is book work, so an answer will not be provided.

(5) (a) Let Q@ ={1,...,6} and let G be the unique subgroup of Sym(6) such that
e G is isomorphic to Sym(2) ¢ Sym(3); and
e there is a G-congruence ~ with associated blocks

Bl = {1,2},32 = {3,4} and Bg = {5,6}

Prove that G is maximal in Sym(6).
(b) More generally, suppose that H is a subgroup of Sym(n) such that
e H is isomorphic to Sym(k) ¢ Sym(¢) for some integers k,l > 2; and
e there is a H-congruence ~ with ¢ associated blocks each of size k.
Prove that H is maximal in Sym(n).

Answer. (a) This could be a corollary of (b), but here is a direct proof. Suppose that
G > M > Sym(6). The group G has index 15 in Sym(6), thus M must have index 5 or 3. Now
the action of Sym(6) on the cosets of M is transitive and has an associated homomorphism
¢ : Sym(6) — Sym(k) where 3 < k < 5. This action cannot be faithful (by considering orders),
and the only non-trivial subgroups of Sym(6) are Alt(6) and Sym(6). But if either of these were
the kernel of ¢, then the image of ¢ would have order at most 2, in particular this image could
not be a transitive subgroup of Sym(k). We are done.




(b) The group H is clearly transitive, so cannot lie inside an intransitive group Sym(k) x
Sym(n — k). On the other hand H contains a transposition, so (by a result in exercises) the
only primitive subgroup that contains H is Sym(n).

Thus, if M is a subgroup such that H < M < Sym(n), then M is imprimitive. Suppose that
~' is a non-trivial M-congruence and let B’ be an associated block.

Claim: B’ is a union of blocks associated with ~.

Proof. Suppose not. Then there is a pair g, h € Q such that g ~ h, g € B'’ and h ¢ B’. Now G
contains the tranposition (g, h) and so must move the block B’. But this implies that |B’| = 1
which is a contradiction. 0

Claim: B’ is a block for ~.

Proof. Suppose not. Then there are two distinct ~-blocks B; and B, inside B’. Let Bz be a
~-block that is not in B’. Now G contains an element that fixes all elements of B; and sends
all elements of B; to By. This is a contradiction. O

Since B’ was arbitrary, we conclude that all blocks for ~" are blocks for ~. But this means that
~=n~'. Then (by lectures) M is a subgruop of a group isomorphic to G which is a contradiction.

(6) Let @ ={1,...,6} and let G be the unique subgroup of Sym(6) such that
e (5 is isomorphic to Sym(2)? Sym(3); and
e there is a G-congruence ~ with associated blocks

Bl = {1,2},.82 = {3,4} and B3 = {5,6}

(a) Write down a set of permutations that generate G.

(b) Let Z(G) be the centre of G; show that |Z(G)| = 2 and write down the unique g € Z(G)\{1}.
A partition of € is a set of disjoint subsets of 2 whose union is equal to 2. Observe that \ :=
{By, By, B3} is a partition of 2. Let x be another partition of Q; we say that u is orthogonal to A
if p contains two sets Cy, Cy each of size 3 and, for all 1 <i<3and 1<j <2, |B;NCj =1

(c) Write down the four partitions of 2 that are orthogonal to A. Call the set of these four

partitions A\*.
(d) Show that G acts on A\t via

g
{{C11,C12, Cis} {Cor, o, O} ) = {{C8), Ot O} ACH, O, i} }

where g c G and CH, 012, 013, C21, 022, 023 c {1, C. ,6}
(e) Let ¢ : G — Sym(4) be the homomorphism associated with the action of G on A*. Show that
e ¥((1,3,5)(2,4,6)) is a 3-cycle;
e 9((1,2)(3,5,4,6)) is a 4-cycle.
(f) Prove that if ¢ is any 3-cycle in Sym(4) and h is any 4-cycle in Sym(4), then (g, h) = Sym(4).
Conclude that G/Z(G) = Sym(4).
(g) Describe G N Alt(6) and prove that G = Z(G) x Sym(4).

Answer. It is convenient to set some notation. We let
B = <(1> 2)7 (3’ 4)’ (57 6)>7
h=1(1,3,5)(2,4,6), H =)h,(1,3)(2,4)).
Recall that B is a normal subgroup of G that is isomorphic to Sym(2) x Sym(2) x Sym(2).

Recall that H = Sym(3) and that G = B x H.
(a) There are many possibilities for this. For instance

G = <(17 2)7 (37 4)7 (57 6)7 (17 3)(27 4)7 (17 5)(27 6>>
(In fact you could miss out (3,4) and (5,6) if you wanted.)




(b) The element g = (1,2)(3,4)(5,6) is central. We need to show that Z(G) = {1, ¢}. Recall
that every element of G' can be written uniquely as bh for some b € B and h € H. Consider an
element bh € Z(G).

Since H = Sym(3) has trivial centre, we conclude that if bh € Z(G), then h = 1. Now let
b = (by,by,b3) € Sym(2) x Sym(2) x Sym(2). If the b; are not all identical, then bh # hb. The
result follows.

()

A= {{1,3,5}, {2,4,6}},3 — {{1,3, 6}, {2,4,5}}

C = {{1,4,5},{2,3,6}},D — {{1,4,6}, {2,3,5}}

(d) We need to check that if g € G and u € A%, then 9 € A+, Once this is done, the two
axioms are a formality. So, let u = {C},Cy}. It is obvious that pf is a set consisting of two
subsets, each of size 3 that partition {1,...,6}. Now observe that

9N By =|C;NBY | =|CiN By =1,

as required. (Here we write By, for BY " and we use the fact that G preserves the set of blocks
of ~.)
(e) Using the notation of (¢) we confirm that

#((1,3,5)(2,4,6)) = (B,C, D)
»((1,2)(3,5,4,6)) = (A, B, D, C).

(f) Let H = (g, h). Since g has order 3 and h has order 4 we know that H has order 12 or
24. We assume that |[H| = 12 and prove a contradiction. Observe that Csym)(g) = (9) In

particular g, ¢", ghQ, gh3 are all distinct. One can check, in addition, that these are all distinct
from g~!. We conclude that H contains all eight 3-cycles that are contained in Sym(4). On the
other hand Ngym4)({h)) is group of order 8. Thus, in particular h9 is an order 4 element outside
(h). Counting elements we find that we have at least 13 elements in H and we are done.

This result implies that the homomorphism ¢ : G — Sym(4) is surjective (since it contains a
3-cycle and a 4-cycle in its image). Thus we must show that ker(¢) = Z(G). Since, by order
considerations, we know that | ker(¢)| = 2, it is enough to show that g = (1,2)(3,4)(5,6) lies
in the kernel of ¢. One checks directly that

A9 = A BY=B,C% = C and DY = D.

(g) Let K = G N Alt(6) and let g be the non-identity element in Z(G). Since g € K and
g ¢ Alt(6), we conclude that K is a proper subgroup of G; indeed it is a subgroup of index 2
and order 24.

Observe next that the two elements listed in (c¢) both lie in K. Thus, by restricting the action
of G on M to K we obtain an action whose associated homomorphism is onto Sym(4). Since
|Sym(4)| = 24 we conclude that ¢ is an isomorphism and K = Sym(24). Now KN Z(G) = {1},
both K and Z(G) are normal subgroups of G, and so G > K x Z(G). Checking orders we find
that G = K x Z(G) = Sym(2) x Sym(4), as required.

(7) The last question concerns some properties of p-groups, i.e. finite groups G, such that |G| = p* for
some prime p and positive integer a.
(a) Let G and H be finite p-groups, for some prime p. Suppose that G acts on H as an object
from Group. Define

Fix(G) :={he€ H|h? = h for all g € G}.

Prove that Fix(G) is a non-trivial subgroup of H.



(b) Let G be a group with a finite normal subgroup K and let P be a Sylow p-subgroup of K.
Show that G = K Ng(P).

(c) Let G be a transitive subgroup of Sym(p*m) where p is a prime, and k and m are positive
integers. Show that if P is a Sylow p-subgroup of G, then each orbit of P has size at least p*.

Answer. (a) Suppose that hy, hy € Fix(G) and let g € G. Observe that
L=19=(hy hy')g=hi(h")* = ha-(hy')’.
Thus we conclude that (h;')? = h;! and so hy' € Fix(G). Similarly
(hy - ho)? = Y- h = hy - hy

and so hy - hy € Fix(G). We conclude that Fix(G) is a subgroup of G.

Now consider the set of orbits associated with the action of G on H. All of these orbits have
order divisible by p, except those in Fix(G). Since the orbits partition H, if Fix(G) were trivial,
this would imply that |[H| =1 (mod p), a contradiction.

(b) G acts by conjugation on €2, the set of Sylow p-subgroups of G. This action is transitive;
indeed if we restrict this action and consider only the action of K on 2, then it is already
transitive.

If P € Q, then the stabilizer of P in G is Ng(P). Furthermore, for every g € G, the coset
Ng(P)g consists of the set of elements h in G such that P" = PY. Since K is transitive, we
conclude that K contains an element in every coset Ng(P)g and so, in particular Ng(P)K = G.

(c) If a Sylow p-subgroup P has an orbit of size less than p*, then there is an element w €
such that the stabilizer P, has order greater than |P|/p*. Since P, < G, this implies, in
particular that |G|/|G,, is not divisible by p*. But, since G is transitive, this contradicts the
Orbit-Stabilizer theorem.




