(E12.1*) A tuple of n + 1 points in $PG_{n-1}(k)$ (i.e. a tuple of n + 1 lines in V) is said to be *special* if no n of its entries lie in a hyperplane. Write Σ_V for the set of special tuples. Prove that the action of PGL(V) on Σ_V is regular.

(E12.2*) Prove that $PSL_n(k)$ is 2-transitive on the points of $PG_{n-1}(k)$. Prove, furthermore, that $PSL_n(k)$ is 3-transitive if and only if n = 2 and every element of k is a square.

(E12.3^{*})Prove that this extension is split.

(E12.4*) Prove that if $n \ge 3$, then $\operatorname{SL}_n(k)$ contains a unique conjugacy class of transvections. Prove that if n = 2, then $\operatorname{SL}_n(k)$ contains one or two conjugacy classes of transvections. Can you characterise when $\operatorname{SL}_n(k)$ contains two conjugacy classes, and describe how the subgroup Q intersects each class? (In particular you should show that each class has non-empty intersection with Q.)

(E12.5^{*})Prove the remaining case.

(E12.6*)Show that the set of upper-triangular matrices with 1's on the diagonal is a Sylow *p*-subgroup of $\operatorname{GL}_n(q)$.

(E12.7)

- (1) Write down elements of order 3, 4 and 5 in the group $SL_2(5)$.
- (2) Write down elements of order 6, 7 and 8 in the group $SL_2(7)$.
- (3) (Harder). Can you write down elements of order q 1, p and q + 1 in the group $SL_2(q)$? Can you describe the structure of a Sylow t-subgroup of $SL_2(q)$ for different t?

(E12.8) What are the orders of elements in $SL_3(q)$?

(E12.9) Describe the conjugacy classes of $PGL_2(q)$. Ascertain which of these classes lies in $PSL_2(q)$ and list those that 'split' into more than one $PSL_2(q)$ -conjugacy class. Do similarly for $PGL_3(q)$.

(E12.10^{*})Check the details of the last paragraph.

(E12.11*)Prove that $PSL_3(4) \cong SL_4(2) \cong A_8$, despite the fact that these groups have the same orders.

(E12.12)Check that this is a well-defined automorphism of $PSL_n(q)$.

(E12.13*)Prove that

$$\operatorname{Aut}(\operatorname{PSL}_n(q)) \ge \begin{cases} \operatorname{P}\Gamma \operatorname{L}_2(q), & \text{if } n = 2;\\ \operatorname{P}\Gamma \operatorname{L}_2(q) \rtimes \langle \iota \rangle, & \text{if } n \neq 3 \end{cases}$$

Hint: you need to study the natural action of, say, $P\Gamma L_n(q)$ on its normal subgroup $PSL_n(q)$.