(E13.1^{*})Prove that the left and right radicals are subspaces.

(E13.2*)Prove that if dim $V < \infty$, then the left and right radicals have the same dimension. Give a counter-example to this assertion when dim $V = \infty$.

(E13.3*)Check that, if β is a non-degenerate sesquilinear form, then

 $U \to U^{\dagger} := \{ x \in V \mid \beta(x, y) = 0 \text{ for all } y \in U \}$

is a duality

(E13.4)Prove Proposition 13.4.

 $(E13.5^*)$ Prove that, if k is a field, then

$$\{\lambda \in k \mid \lambda \lambda^{\sigma} = 1\} = \{\epsilon/\epsilon^{\sigma} \mid \epsilon \in k\}$$

 $(E13.6^*)$ For $x_1, \ldots, x_l \in V$, define

$$[x_1, \dots, x_l] := \{ y \in V \mid y^t x_1 = y^T x_2 = \dots = y^T x_l = 0 \}$$

Now define Δ_0 to be the polarity of PG(V) that, for $x_1, \ldots, x_n \in V$, does

 $\langle x_1, \ldots, x_n \rangle \longleftrightarrow [x_1, \ldots, x_n].$

Prove that this is a polarity.

(E13.7)Fix(σ) and Trace(σ) are both subfields of k.

(E13.8) Fix(σ) = Trace(σ) unless char(k) = 2 and σ = 1, in which case Trace(σ) = {0}.

(E13.9)Let char(k) = 2 and suppose that k is perfect. Let β be symmetric and define

$$U := \{ x \in V \mid \beta(x, x) = 0 \}.$$

Then U is a subspace of dimension at least n-1.

(E13.10*)Fix a basis $\mathcal{B} = \{x_1, \ldots, x_n\}$ for V and let $Q: V \to k$ be a quadratic form. There is a matrix A such that $Q(x) = x^T A x$. Moreover

$$A_{ij} = \begin{cases} \beta_Q(x_i, x_j), & \text{if } i < j, \\ Q(x_i), & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

(E13.11) If char(k) $\neq 2$, then $Q(x) = \frac{1}{2}\beta_Q(x, x)$.

(E13.12*)Suppose that β is a symmetric, alternating bilinear form with associated matrix B with respect to some basis β . Now define the matrix A via

$$A_{ij} = \begin{cases} B_{ij}, & \text{if } i < j, \\ 0, & \text{if } i > j. \end{cases}$$

We have not defined the diagonal on the matrix A - we can set it to be anything that we choose. Now define $Q(x) = x^T A x$. Check that Q polarizes to β .

(E13.13) If char(k) $\neq 2$, then β_Q is non-degenerate if and only if Q is non-degenerate.

(E13.14*) If char(k) = 2, k is perfect, and $Q: V \to k$ is non-degenerate, then dim(Rad(β_Q)) ≤ 1 .

(E13.15) Any two hyperbolic lines of the same type are isomorphic (as formed spaces).

(E13.16)Suppose that U, U' (resp. W, W') are isomorphic formed spaces of the same type. Then $U \perp W$ and $U' \perp W'$ are isomorphic formed spaces.

 $(E13.17^*)V = V_1 \oplus W_1$ and the restriction of the form to V_1 is non-degenerate (resp. non-singular).