(E16.1*)Let β_1 and β_2 be non-degenerate alternating bilinear forms defined on a 2*r*-dimensional vector space *V* over a field *k*. Then $\text{Isom}(\beta_1)$ and $\text{Isom}(\beta_2)$ (resp. $\text{Sim}(\beta_1)$ and $\text{Sim}(\beta_2)$) are conjugate subgroups of $\text{GL}_{2r}(k)$. Furthermore $\text{SemiSim}(\beta_1)$ and $\text{SemiSim}(\beta_2)$ are conjugate subgroups of $\Gamma L_{2r}(k)$.

$$(E16.2)|Sp_{2r}(k) \cap K| = \begin{cases} 2, & \text{if } Char(k) \neq 2; \\ 1, & otherwise. \end{cases}$$

$$(E16.2)Circle an altermative result of Lemma 22 has a barrier that$$

(E16.3)Give an alternative proof of Lemma ?? by showing that

$$X^{T} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Longleftrightarrow \det(X) = 1.$$

(E16.4*)Prove that the permutation rank is 2 if and only if G acts 2-transitively on Ω .

(E16.5)Prove that the permutation rank of G is equal to the number of orbits of G in the induced action on Ω^2 .

(E16.6*) Prove that if $\beta(x, y) = 0$, then there exists z with $\beta(x, z), \beta(y, z) \neq 0$.

(E16.7*)Prove that if $\beta(x, y) \neq 0$, then there exists z with $\beta(x, z) = \beta(y, z) = 0$. (E16.8)Prove that this extension is split.

(E16.9*)Given a transvection t, there exists $f \in V^*$ and $a \in \ker(f)$ such that

$$vT = v + (vf)a$$
 for all $v \in V$.

(E16.10*)Prove that symplectic transvections in $\text{Sp}_6(2)$ and Sp(4,3) are commutators.