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12. Linear groups acting on projective space

In this section V is an n-dimensional vector space over a field k. We investigate the action of PGL(V )
(or, equivalently, of GL(V )) on PG(V ). You will see that we gradually put together the pieces to apply
Iwasawa’s criterion to PSL(V ).

12.1. Transitivity properties.

Lemma 12.1. If n ≥ 2, then PGL(V ) acts 2-transitively on the set of points of PG(V ).

Proof. Let (v1, v2) and (w1, w2) be pairs of linearly independent vectors in V . Extend both pairs to bases:
BV := {v1, . . . , vn} and BW{w1, . . . , wn} Now let A be the matrix

((v1)W (v2)W · · · (vn)W ) ,

where we write (vi)W to mean the column vector vi written in terms of the basis BW . Now it is easy to see
that vTi = wT

i A
T for 1, . . . , n and we are done. �

In fact Lemma 12.1 can be deduced from a stronger result which we leave as an exercise. Recall that if a
group acts transitively on a set with trivial stabilizers, then the action is called regular or sharply transitive.

(E12.1*) A tuple of n+1 points in PGn−1(k) (i.e. a tuple of n+1 lines in V ) is said to be special

if no n of its entries lie in a hyperplane. Write ΣV for the set of special tuples. Prove that the

action of PGL(V ) on ΣV is regular.

(E12.2*) Prove that PSLn(k) is 2-transitive on the points of PGn−1(k). Prove, furthermore, that

PSLn(k) is 3-transitive if and only if n = 2 and every element of k is a square.

Lemma 12.2. Let G = SLn(k) and ω ∈ Ω, the set of points of PG(V ). Then

Gω
∼= Q�GLn−1(k)

where Q is an abelian group isomorphic to the additive group (kn−1,+).

The proof below sheds more light on the groups Q and Gω.

Proof. Since G acts transitively on the set of points of PG(V ), all stabilizers are isomorphic. We set
{e1, . . . , en} to be the basis of elementary vectors and observe that the stabilizer of �en� is

(11) G�en� =




g :=




a1

A
...
an−1

0 · · · 0 a




�����
a1, . . . , an−1 ∈ k, a ∈ k∗,
A ∈ GLn−1(k),
a = 1

det(A)




.

Now there is a natural epimomorphism

G�en� → GLn−1(q), g �→ A,
and the kernel of this map is the group

(12) Q :=




g :=




a1

I
...
an−1

0 · · · 0 1


 | a1, . . . , an−1 ∈ k





which is clearly isomorphic to (kn−1,+). Thus G�en� is an extension of Q by GLn−1(q).

(E12.3*)Prove that this extension is split.

�



56 NICK GILL

12.2. Transvections and generation. The motivation for this subsection is to establish that SL(V ) =
�Qg | g ∈ SL(V )� where Q is the subgroup of GL(V ) defined in Lemma 12.2.37

A transvection on V is an element t ∈ GL(V ) such that

• rk(t− I) = 1;
• (t− I)2 = 0.

We define

• the axis of t to be ker(t− I);
• the centre of t to be Im(t− I).

Notice that the axis of t is a hyperplane in V , while the centre is a 1-dimensional subspace of that hyperplane.

Lemma 12.3. All transvections lie in SLn(q) and are conjugate in GLn(q).

Proof. We choose a basis for V as follows:

• vn ∈ Im(t− I);
• v2, . . . , vn−1 are chosen so that �v1, . . . , vn−1� is the centre of t;
• v1 such that vn = v

t−I
1 .

Then it is easy to see that the matrix of t with respect to this matrix is

(13)




1 0 · · · 0 1
0 1 0
...

. . .
...

... 1 0
0 · · · · · · 0 1




(Recall that we are acting on the right.) The result follows. �
By comparing (12) and (13) it is clear that the group Q in Lemma 12.2 contains a transvection.

(E12.4*) Prove that if n ≥ 3, then SLn(k) contains a unique conjugacy class of transvections.

Prove that if n = 2, then SLn(k) contains one or two conjugacy classes of transvections. Can you

characterise when SLn(k) contains two conjugacy classes, and describe how the subgroup Q intersects

each class? (In particular you should show that each class has non-empty intersection with Q.)

Lemma 12.4. If n ≥ 2, then SLn(k) is generated by the set of all transvections.

Proof. Let G = SLn(k) and define
D := �t | t is a transvection�.

We proceed by induction on n.
Let n = 2 and consider the group

Q :=

��
1 a
0 1

�
| a ∈ k

�
.

(This is the same group Q which was defined in the proof of Lemma 12.2, and is normal in G�e2�.) Observe
that all non-identity elements of Q are transvections. Furthermore it is easy to see that Q is transitive on
the set of 1-subspaces of V that are distinct from �e2�. Since we can easily find a transvection that does not
fix �e2�, we conclude that D is 2-transitive on the points of PGn−1(k).
Thus we will be done if we can show that the stabilizer in G of a pair of distinct points of PGn−1(k) is

equal to the stabilizer in D of that pair. One can calculate directly that

G(�e1�,�e2�) =

��
a 0
0 a−1

�
| a ∈ k∗

�
.

Now we can write elements of this group as products of transvections as follows:

(14)

�
1 1
0 1

��
1 0
a− 1 1

��
1 −a−1

0 1

��
1 0

a− a2 1

�
=

�
a 0
0 a−1

�
.

37Refer to Lemma 9.3, Iwasawa’s criterion, to see why we would want to know this.



FINITE PERMUTATION GROUPS AND FINITE CLASSICAL GROUPS 57

We conclude that SL2(k) is generated by transvections.
Now consider n > 2. Let v1 and vn be linearly independent vectors in V . We can extend to a basis

{v1, v2, . . . , vn} and now observe that the matrix (13) is a transvection which maps �v1� to �v1 + vn�. One
quickly concludes thatD is transitive on points of PGn−1(k). It is sufficient, then, to show that G�vn� = D�vn�.
We will do this by appealing to induction.
Recall first that the structure of G�vn� is given in Lemma 12.2. Next observe that G�vn� acts naturally on

the quotient space V/�vn� and, moreover, that transvections in G�vn� induce transvections (or the identity)
on V/�vn�Thus, by induction, they generate the group SLn−1(k) on this quotient space. Thus if g ∈ G�vn�
has the form (11) then, by multiplying g by transvections we obtain an element

h :=




a−1 0 · · · 0 a1

0 1
... a2

...
. . . 0

...
0 · · · 0 1 an−1

0 · · · · · · 0 a




where a, a1, . . . , an−1 ∈ k with a �= 0. Further multiplication by transvections allows us to assume that
a1 = · · · an−1 = 0, and now the identity (14) allows us to multiply by more transvections to assume that
a = 1. Thus we have written g as a product of transvections and the result follows. �

Lemma 12.5. Let t be a transvection in SLn(k). Then t is a commutator except when n = 2 and |k| ≤ 3.

Proof. If n = 1, SLn(k) is trivial and the result is immediate, so assume that n ≥ 2.
By (E12.4) all transvections are conjugate to a non-trivial element from Q, thus we need only show that

all non-trivial elements of Q are commutators. If n = 2 and |k| > 3 one can do this by taking a, x ∈ k with
a2 �= 0, 1 and observing that

(15)

�
1 −x
0 1

��
a 0
0 a−1

��
1 x
0 1

��
a−1 0
0 a

�
=

�
1 (a2 − 1)x
0 1

�
.

Clearly, as x varies across k, we cover all non-trivial elements of Q.
If n > 2, then all transvections are conjugate, and we need only show that the transvection (13) is a

commutator. If |k| > 3, then this is achieved using (15) by taking x = 1
a2−1

, and enlarging each matrix to
size n by n, by appending blocks equal to the identity of rank n− 2.
We are left with the case n > 2 and |k| = 2 or 3.

(E12.5*)Prove the remaining case.

�

The two previous lemmas imply the following corollary.

Corollary 12.6. SLn(k) is perfect except when n = 2 and q ≤ 3.

Remark. The projective image of a transvection in PSLn(k) is called an elation. Now it is easy to see
that the three previous results, Lemmas 12.4 and 12.5 and Corollary 12.6 all remain true if one replaces all
instances of the word ‘transvection’ by ‘elation’ and all instances of ‘SLn(k)’ by ‘PSLn(k)’.

12.3. Finite groups. In this section k = Fq. In this situation, for

X ∈ {Γ,G, S,PΓ,PG,PS},
we write XLn(q) as a synonym for XLn(k).

Theorem 12.7. The group PSLn(q) is simple except when n = 2 and q ≤ 3.

Proof. If n = 1, then PSLn(q) is trivial and the result is immediate. Assume that n ≥ 2 and that q > 3.
Observe that (E12.2) implies that PSLn(q) acts faithfully and primitively on the set of points of PGn−1(q).
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Let Q0 be the subgroup of PSLn(q) equal to the projective image of the subgroup Q in Lemma 12.2. Now
(E12.4) implies that

�
g∈G
Qg contains all transvections of SLn(q) and Lemma 12.4 implies, therefore, that

�Qg
0 | g ∈ G� = PSLn(q).

Finally Corollary 12.6 implies that PSLn(q) is perfect. Now Lemma 9.3 (Iwasawa’s Criterion) implies that
PSLn(q) is simple. �
In the next result and hereafter, for integers k, l, we write (k, l) for their greatest common divisor.

Proposition 12.8.
|GLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−2)(qn − qn−1)

= q
1
2
n(n−1)(qn − 1)(qn−1 − 1) · · · (q2 − 1)(q − 1).

|PGLn(q)| = |SLn(q)| = |GLn(q)|/(q − 1).

|PSLn(q)| = |SLn(q)|/(q − 1, n).

Proof. We write down elements of GLn(q) with respect to a fixed basis for V = Fn
q . There are q

n− 1 choices
for the first column, then qn − q choices for the second column (since we cannot choose vectors that are in
the span of the first), then qn− q2 choices for the third column, and so on. The identity for |GLn(q)| follows.
Now |PGLn(q)| = |GLn(q)|/|K| where, by (E11.8),

K = {αI ∈ GL(V ) | α ∈ k}.
Since |K| = q − 1, the identity for |PGLn(q)| follows. On the other hand |SLn(q)| is the kernel of the
determinant map GLn(q) → k∗. Since this map is surjective, the first isomorphism theorem for groups
yields the identity for SLn(q).
Finally observe that |PSLn(q)| = |SLn(q)|/|K ∩ SLn(q)|. Using the fact that k∗ is cyclic of order q− 1 we

conclude immediately that |K ∩ SLn(q)| = (n, q − 1) and we are done. �
(E12.6*)Show that the set of upper-triangular matrices with 1’s on the diagonal is a Sylow p-

subgroup of GLn(q).

(E12.7)
(1) Write down elements of order 3, 4 and 5 in the group SL2(5).
(2) Write down elements of order 6, 7 and 8 in the group SL2(7).
(3) (Harder). Can you write down elements of order q − 1, p and q + 1 in the group SL2(q)? Can

you describe the structure of a Sylow t-subgroup of SL2(q) for different t?

(E12.8)What are the orders of elements in SL3(q)?

(E12.9)Describe the conjugacy classes of PGL2(q). Ascertain which of these classes lies in PSL2(q)

and list those that ’split’ into more than one PSL2(q)-conjugacy class. Do similarly for PGL3(q).

Isomorphisms between ‘different’ simple groups turn out to be very significant in the group theory universe.
The next result discusses some of these.

Proposition 12.9. (1) SL2(2) ∼= S3;
(2) PSL2(3) ∼= A4;
(3) SL2(4) ∼= PSL2(5) ∼= A5;
(4) PSL2(7) ∼= SL3(2);
(5) PSL2(9) ∼= A6;
(6) SL4(2) ∼= A8.

Note that we write SL rather than PSL in cases where (n, q−1) = 1, since in these cases PSLn(q) ∼= SLn(q).

Proof of (1) to (4) only. A 2-dimensional vector space over F2 has 3 lines through the origin, on which
SL2(2) acts faithfully. Thus SL2(2) embeds into S3; comparing orders we conclude that SL2(2) = S3.
A 2-dimensional vector space over F3 has 4 lines through the origin, on which PSL2(3) acts faithfully.

Thus PSL2(3) embeds into S4 as a subgroup of index 2. Now S4 has a unique subgroup of index 2, namely
A4, thus PSL2(3) ∼= A4.
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A 2-dimensional vector space over F4 has 5 lines through the origin, on which SL2(4) acts faithfully. Thus
SL2(4) embeds into S5 as a subgroup of index 2. Either SL2(4) = A5 or |A5 : SL2(4) ∩ A5| = 2. But, since
A5 is simple and index 2 subgroups are normal, the latter possibility cannot occur. Thus SL2(4) = A5.
We use the same reasoning on the simplicity of A5 to see that if PSL2(5) acts on a set of size 5, then

PSL2(5) is isomorphic to A5. We claim that PSL2(5) has 5 Sylow 2-subgroups. One can compute these
directly or else observe that the possible number of Sylow 2-subgroups is 1,3,5 or 15. Since PSL2(5) is
simple the first two are ruled out (why?). Now observe that, since a Sylow 2-subgroup of PSL2(5) is equal
to the centralizer of all of its non-trivial elements, we conclude that these elements lie in a unique Sylow
2-subgroup. If there were 15 Sylow 2-subgroups, then we would have 45 elements of order 2 in PSL2(5)
which is impossible - there are, for instance, 24 elements of order 5.
We know that Aut(PG2(2)) = SL3(2) and, by (E11.2), we know that PG2(2) is equal to the incidence

structure represented in Figure 4, the Fano plane. Thus it is sufficient to show that PSL2(7) acts non-trivially
on the Fano plane – since PSL2(7) is simple, this action will therefore be faithful, inducing an embedding
of PSL2(7) into SL3(2) which must be an isomorphism by comparison of orders.
Now define an incidence structure I as follows: Let S be a Sylow 2-subgroup of G = PSL2(7) - it is

dihedral of order 8 and contains two K4-subgroups, U and V . One can check that NG(U) ∼= NG(W ) ∼= S4,
thus there are 7 conjugates of U and 7 conjugates of V ; what is more these conjugates are distinct. We set
the conjugates of U to be the points of our incidence structure, the conjugates of V to be the lines, and say
that a point and a line are incident if they are contained in the same Sylow 2-subgroup of G. Now one must
check that this incidence structure is isomorphic to the Fano plane, and that the natural conjugation action
of G on the conjugates of U and V respectively, induces an action on I.

(E12.10*)Check the details of the last paragraph.

�
It turns out that the above list is a complete list of all isomorphisms between groups of form PSLn(q)

and An and Sn (a hardish fact that we won’t prove). In fact this list contains almost all instances of a
coincidence of cardinality between groups of form PSLn(q) and groups of form An - there is one more such
coincidence which is considered in the next exercise.

(E12.11*)Prove that PSL3(4) �∼= SL4(2) ∼= A8, despite the fact that these groups have the same

orders.

We have seen, in Lemma 3.5, that PSLn(q) embeds into its own automorphism group. In fact, as the next
proposition makes clear, we have (kind of) already seen the automorphism group of PSLn(q). To state the
proposition we need one definition: fix a basis of V = Fn

q and define

ι : PSLn(q) → PSLn(q), x �→ x−T .

To be clear: given x ∈ PSLn(q), let X be an element in SLn(q) that projects onto x, then define xι to be
the projective image of X−T , the inverse transpose of the matrix X with respect to the fixed basis.

(E12.12)Check that this is a well-defined automorphism of PSLn(q).

Proposition 12.10. Aut(PSLn(q)) =

�
PΓL2(q), if n = 2;
PΓL2(q)� �ι�, if n �= 3.

The proof is omitted, although one inclusion is covered in the following exercise. You should compare the
statement of the proposition to the statement of (E11.16).

(E12.13*)Prove that

Aut(PSLn(q)) ≥
�

PΓL2(q), if n = 2;
PΓL2(q)� �ι�, if n �= 3.

Hint: you need to study the natural action of, say, PΓLn(q) on its normal subgroup PSLn(q).


