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14. Isometries and Witt’s Lemma

For i = 1, 2, let βi be a σ-sesquilinear form on a vector space Vi over a field k. We define

• an isometry between β1 and β2 to be an invertible linear map g : V1 → V2 such that

β2(xg, yg) = β1(x, y), for all x, y ∈ V1.

• a similarity between β1 and β2 to be an invertible linear map g : V1 → V2 for which there exists c ∈ k
such that

β2(xg, yg) = cβ1(x, y), for all x, y ∈ V1.

• a semisimilarity between β1 and β2 to be an invertible semilinear map g : V1 → V2 for which there
exists c ∈ k such that

β2(xg, yg) = cβ1(x, y), for all x, y ∈ V1.

For i = 1, 2, let Qi be a quadratic form on a vector space Vi over a field k. We define

• an isometry between Q1 and Q2 to be an invertible linear map g : V1 → V2 such that

Q2(xg) = Q1(x), for all x ∈ V1,

• a similarity between Q1 and Q2 to be an invertible linear map g : V1 → V2 for which there exists c ∈ k
such that

Q2(xg) = cQ1(x), for all x ∈ V1,

• a semisimilarity between Q1 and Q2 to be an invertible semilinear map g : V1 → V2 for which there
exists c ∈ k such that

Q2(xg) = cQ1(x), for all x ∈ V1,

Now write κi for βi/ Qi as appropriate. If (V1, κ1) = (V2, κ2), then we drop the subscripts and we refer to
an isometry of (V, κ), and similarly with similarities and semisimilarities. Now we define several subgroups of
GL(V ):

• Isom(κ): the set of isometries of κ;
• Sim(κ): the set of similarities of κ;
• SemiSim(κ): the set of semisimilarities of κ.

Observe that
Isom(κ) ≤ Sim(κ) ≤ SemiSim(κ).

Before we move on, let us note the connection to matrices. Fix a basis for the vector space V and fix κ to
be a σ-sesquilinear form given by

κ(x, y) = xTAy

where A is some matrix. Then
Isom(κ) = {X | XA(Xσ)T = A}.

One can give similar formulations for similarities and semisimilarities, and for quadratic forms. 41

14.1. Witt’s lemma. We call (V, κ) a (de)formed space if it is a pair satisfying all the conditions to be a
formed space with the possible exception of non-degeneracy. In this section we prove a crucial result concerning
(de)formed spaces which allows us to extend isometries between subspaces to isometries of the full space.

(E14.1) Let β be a σ-Hermitian, or alternating form, with radical Rad(V ). Prove that the natural

map V → V/Rad(V ) is an isometry. What happens if we ask the same question with β replaced by a

quadratic form Q?

Theorem 14.1. (Witt’s Lemma) Let (V, κ) be a (de)formed space, U a subspace of V and

h : U → Uh < V

an isometry. Then h extends to an isometry g : V → V if and only if

(U ∩Rad(V ))h = Uh ∩Rad(V ).

In particular, if the radical is trivial, then any h extends.

41We have rarely mentioned the complex numbers in this course. But, letting k = C and taking A = I and σ = 1, you should
observe that Isom(κ) is then the set of orthogonal matrices over C, a group you undoubtedly encountered at some point during
undergraduate mathematics.
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Note that if we wanted to prove Witt’s Lemma for the situation when κ = β, a σ-sesquilinear form, then
the first step of the proof would be to appeal to (E14.1) and quotient V by Rad(V ). We could then proceed
on the assumption that κ is non-degenerate, in which case, we need to prove that any isometry h extends.

However we want to prove this result when κ = Q also, thus we need to be a little more careful. For instance
it is perfectly possible for a non-degenerate quadratic form to have non-trivial radical, thus considering the
quotient in this situation is not sufficient.

Proof. 1. “only if” Suppose that g is an isometry V → V with g|U = h. Then

(U ∩ Rad(V ))h = (U ∩Rad(V ))g = Ug ∩Rad(V ) = Uh ∩Rad(V ),

and we are done.
2. “if” Suppose that (U ∩Rad(V ))h = Uh ∩Rad(V ).

(E14.2*)Let U1 and U2 be subspaces of a vector space V having the same dimension. Show that there

is a subspace W of V which is a complement for both U1 and U2.

2a. It is sufficient to assume that Rad(V ) ≤ U ∩ Uh. Suppose that U and Uh don’t contain Rad(V ).
Observe that, by supposition, dim(U ∩ Rad(V )) = dim(Uh ∩ Rad(V )), and let W be a common complement
to U ∩Rad(V ) and Uh ∩Rad(V ) in Rad(V ). Now extend h to h⊕ 1 : U ⊕W → Uh⊕W and observe that it
is an isometry.
2b. Assume that Rad(V ) ≤ U ∩Uh. Write m := dim(V ) and proceed by induction on dim(U)/Rad(V ) =

m− dim(Rad(V )).
2c. Base case. If U = Rad(V ) = Uh, then choose a complement W to U in V and extend h by the identity

on W . The base case is done.
2d. Inductive step. Assume that the result holds for V �, U �, h� whenever

dim(U �/Rad(V �)) ≤ dim(U/Rad(V )).

Let H be a hyperplane of U containing Rad(V ). Then h|H extends to an isometry g� of V . It is enough to
show that h(g�)−1 extends to an isometry; in other words we may assume that h is the identity on H.

If h is the identity on U , then we may take g = 1. Thus we assume that h �= 1 and so ker(h− 1) = H and
the image of h − 1 is a one-dimensional subspace P of V . Now write β for κ if κ is sesquilinear, and write β
for the polarized form of κ, when κ is quadratic. For X a subspace of V , define42

X⊥ := {x ∈ V | β(x, y) = 0 for all y ∈ U}.
(E14.3) dim(X⊥) ≥ n− dim(X) with equality if and only if β |X is non-degenerate.

We wish to study the subspace P⊥. If P ≤ Rad(V ), then P⊥ = V . Now let W be a a complement to both U
and Uh in V . Then the function

h⊕ 1 : U ⊕W → Uh⊕W

is an isometry that extends h to V and the result is proved. Assume, instead, that P �≤ Rad(V ), then P⊥ is a
subspace of V of dimension n− 1. Furthermore, since h is an isometry, if x, y ∈ U , then

β(xh, y(h− 1)) = β(xh, yh) − β(xh, y) = β(x, y) − β(xh, y) = β(x− xh, y).

This identity implies two things:

(1) By considering what happens as x and y vary
over U we obtain that

U ⊆ P⊥ ⇐⇒ Uh ⊆ P⊥.

(2) By letting x vary over H, and y vary over U we
obtain that

β(xh, y(h− 1)) = β(x− xh, y) = β(0, y) = 0

and, thus, H ⊆ P⊥.

The diagram at the right summarises the situation
(lines indicate inclusion; dimensions are written along-
side).

n

n− 1

m

m− 1

1

V

P⊥

U Uh

H

P

42This is the same definition as before, but previously we assumed that β was non-degenerate, and we do not do that now.
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Suppose next that U �≤ P⊥. Then (2) implies that
Uh �≤ P⊥. Now let W be a complement to H in P⊥

and observe that W is, then, a complement to U in V .
Now the function

h⊕ 1 : U ⊕W → Uh⊕W

is an isometry that extends h to V and the result
is proved. Thus, in what follows we assume that
U ≤ P⊥. By (2) this implies that Uh ≤ P⊥ and,
since P ≤ Uh − U we conclude that P ≤ P⊥. Again
the diagram summarises the situation.

n

n− 1

m

m− 1

1

V

P⊥

U Uh

H

P

Suppose next that U,Uh and P⊥ do not all coincide. There are two cases to consider:

• Suppose that U �= Uh. Then U = �H, u1� and Uh = �H,U2� for some vectors u1, u2 ∈ B. Let W0 be a
complement for U + Uh in P⊥, and observe that W = �W0, u1 + u2� is a complement for both U and
Uh in P⊥. Then the function

h⊕ 1 : U ⊕W → Uh ⊕W

extends h to an isometry on P⊥.
• Suppose, instead, that U = Uh �= P⊥ and let W be a complement to U in P⊥. Then, once again, the

function
h⊕ 1 : U ⊕W → Uh ⊕W

extends h to an isometry on P⊥.

Thus, in any case, we may assume that U = Uh = P⊥.
Write P = �x� where x = uh− u for some u ∈ U . Observe that β(x, x) = 0 and, in the orthogonal case

Q(x) = Q(uh− u) = Q(uh) + Q(u) − β(uh, u) = 2Q(u) − β(u, u) = 0.

Thus x is isotropic (singular in the orthogonal case). Since x �∈ Rad(V ), x lies in a non-degenerate subspace of
dimension n− Rad(V ) (any complement of Rad(V ) that contains x will do). Now Theorem 13.7 implies that
there is a hyperbolic line L = �x, y�. Observe that y �∈ P⊥, thus our job is to extend h to �U, y�.

(E14.4) Suppose that (V,Q) is a hyperbolic line containing two elements x, y such that (x, y) is a

hyperbolic pair and Q(x) = 0. Then there exists an element z such that (x, z) is a hyperbolic pair and

Q(x) = Q(z) = 0.

Observe that neither x nor y are in Rad(V ) and (E14.4) implies that we may assume that Q(y) = 0. Then
�x�⊥ has dimension n− 1 and, since �x� is a hyperplane in L, L⊥ is a hyperplane in �x�⊥ = P⊥, while L⊥h is
a hyperplane in �xh�⊥ (and so has dimension n− 2).

It is easy to check that (L⊥h)⊥ contains a non-degenerate subspace L� of dimension 2 that contains x. Then,
since x is isotropic, Theorem 13.7 implies that L� is a hyperbolic line and (E14.3) implies that (L�)⊥ = L⊥h.
Now choose y� ∈ L� such that (x, y�) is a hyperbolic pair and observe that y� �∈ U . Furthermore, by (E14.4) we
may choose y� so that Q(y�) = 0.

We define h� : y → y� and, since h⊕ h� is an isometry, we are done.

(E14.5)Check that h⊕ h� is an isometry.

�
Witt’s lemma has several important corollaries, which we leave as exercises.

(E14.6*) Let (V, κ) be a formed space. Then the Witt index and the isomorphism class of a maximal

anisotropic subspace are determined.

(E14.7*) Let (V, κ) be a formed space. Any maximal totally isotropic/ totally singular subspaces in V

have the same dimension. This dimension is equal to the Witt index.



68 NICK GILL

14.2. Anisotropic formed spaces. Let (V, κ) be a formed space. Recall that (V, κ) comes in three flavours.
Our aim in this subsection is to refine Theorem 13.5 in each case – the first we can do in total generality; for
the other two we restrict ourselves to vector spaces over finite fields.

14.2.1. Alternating forms. Our first lemma is nothing more than an observation.

Lemma 14.2. The only anisotropic space carrying an alternating bilinear form is the zero space.

A formed space (V, β) with β alternating and bilinear is called a symplectic space. Lemma 14.2 and
Theorem 13.5 implies that there is only one symplectic space of polar rank r. It is the space

(Sp2r) with basis {v1, w1, . . . , vr, wr} where, for i = 1, . . . , r, (vi, wi) are mutually orthogonal hyperbolic pairs.

14.2.2. σ-Hermitian forms over finite fields. It is convenient to establish some notation in this setting. Suppose
that k = Fq2 for some prime power q. Then k has a unique subfield, k0, of order q; k0 is the fixed field of the
field automorphism

σ : k → k, x �→ xq.

We define two important functions

Tr :k → k0, c �→ c + cσ

N :k → k0, c �→ c · cσ

We call Tr the trace and N the norm. 43

(E14.8) The norm and trace functions are surjective.

Lemma 14.3. Suppose that (V, β) is a formed space of dimension n over a finite field k with β σ-Hermitian.
Then

(1) k = F2
q for some q;

(2) An anisotropic subspace of V satisfies

dim(U) =

�
0, if n is even;
1, if n is odd.

(3) The space U is unique up to isomorphism.

Proof. We know that σ has order 2, hence k = F2
q for some q and σ(x) = xq. We have proved (1).

To prove (2) we must show that an anisotropic subspace U of V has dimension at most 1. Suppose U is
anisotropic of dimension at least 2. Let v, w be orthogonal vectors in U (i.e. β(v, w) = 0) and, replacing by
scalar multiples if necessary, we can assume that β(v, v) = β(w,w) = 1. Consider the function f(v + cw) as c
varies over k. (E14.8) implies that we can choose c such that ccq = −1 we see that f(v+cw) = 0, contradicting
the fact that U is anisotropic. Now (2) follows from Theorem 13.5.

To prove (3) we suppose that dim(U) = 1. If v ∈ U and β(v, v) = c ∈ Fq then, since the norm is onto, there
is a bijective linear map A : k → k such that Aβ(v, v) = 1. The result follows. �

A formed space (V, β) with β σ-Hermitian (and σ non-trivial) is called a unitary space. The lemma and
Theorem 13.5 implies a natural division of unitary spaces, as follows. Note that, in all cases, for i = 1, . . . , r,
(vi, wi) are mutually orthogonal hyperbolic pairs.

(U2r) with basis {v1, w1, . . . , vr, wr}.
(u2r+1) with basis {v1, w1, . . . , vr, wr, u} where �u� is anisotropic and orthogonal to �v1, w2, . . . , vr, wr�.

Observe in particular that a unitary formed space of dimension n must have polar rank r = �n
2
�.

43These functions have more general definitions for any finite Galois field extension.
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14.2.3. Quadratic forms over finite fields.

(E14.9*) Let a, b ∈ k∗. For all c ∈ k, there exist x, y ∈ k with ax2 + by2 = c.

Lemma 14.4. If (V,Q) is anisotropic over Fq, then dim(V ) ≤ 2. Furthermore (V,Q) is unique for each
dimension except that if q is odd and dim(V ) = 1, then there are two such, one a non-square multiple of the
other.

Proof. Assume that dim(V ) ≥ 3 so that, in particular, βQ is associated with a polarity of PG(V ). If char(k) = 2,
then let u ∈ V \{0} and let v ∈ �u�⊥\�u� (note that such a v exists since dim(V ) ≥ 3). Then Q(xu + yv) =
x2Q(u) + y2Q(v) and, since every element of k is a square, there exist x, y ∈ k∗ such that Q(xu + yv) = 0, a
contradiction.

If char(k) is odd, then let u ∈ V \{0}, v ∈ �u�⊥ and w ∈ �u, v�⊥. By assumption u, v and w are non-singular,
and so (E14.9) implies that there exist x, y ∈ k such that x2Q(u)+y2Q(v) = −Q(w). Then Q(xu+yv+w) = 0
and we are done.

If dim(V ) = 1, then any quadratic form is equivalent to either x2 or ζx2 for ζ a non-square.
Assume, then, that dim(V ) = 2 �= char(k). By completing the square, a quadratic form over V is equivalent

to one of x2 + y2, x2 + ζy2 or ζx2 + ζy2 where ζ is a non-square.
If q ≡ 1 (mod 4), then −1 = α2 for some α ∈ k and so x2 + y2 = (x+αy)(x−αy) and so the first and third

forms are not anisotropic.
If q ≡ 3 (mod 4), then we can assume that ζ = −1. Now the second form is (x + y)(x − y) which is not

anisotropic. Moreover the set of squares is not closed under addition (or it would be a subgroup of the additive
group, but 1

2
(q + 1) does not divide q); thus there exist two squares whose sum is a non-square. By rescaling

we can find α, β ∈ k such that α2 + β2 = −1. Then

−(x2 + y2) = (αx + βy)2 + (αx− βy)

and so the first and third forms are equivalent.

(E14.10*)Prove the result for dim(V ) = 2 = char(k).

�
A formed space (V,Q) with Q quadratic is called an orthogonal space. The lemma and Theorem 13.5

implies a natural division of orthogonal spaces, as follows. Note that, in all cases, for i = 1, . . . , r, (vi, wi) are
mutually orthogonal hyperbolic pairs, with Q(vi) = Q(wi) = 0.

(O+
2r) with basis {v1, w1, . . . , vr, wr}.

(O2r+1) with basis {v1, w1, . . . , vr, wr, u} where �u� is anisotropic and orthogonal to �v1, w2, . . . , vr, wr�. We can
prescribe, moreover, that Q(u) = 1 or, if q is odd, Q(u) is 1 or a non-square.

(O−
2r+2) with basis {v1, w1, . . . , vr, wr, u, u

�} where �u, u�� is anisotropic and orthogonal to �v1, w2, . . . , vr, wr�.
We can prescribe, moreover, that Q(u) = 1, Q(u�) = a and x2 + x + a is irreducible in Fq[x].

(E14.11)Prove the final assertion.


