17. UNITARY GROUPS

(E17.1)Let β_1 and β_2 be non-degenerate σ -Hermitian forms defined on a *n*-dimensional vector space V over the field $k = \mathbb{F}_{q^2}$. Then $\operatorname{Isom}(\beta_1)$ and $\operatorname{Isom}(\beta_2)$ (resp. $\operatorname{Sim}(\beta_1)$ and $\operatorname{Sim}(\beta_2)$) are conjugate subgroups of $\operatorname{GL}_n(k)$. Furthermore $\operatorname{SemiSim}(\beta_1)$ and $\operatorname{SemiSim}(\beta_2)$ are conjugate subgroups of $\operatorname{FL}_n(k)$.

(E17.2*) $SU_2(q) \cong SL_2(q)$ and, moreover, the action of $SU_2(q)$ on the set of points of the associated polar space is isomorphic to the action of $SL_2(q)$ on the set of points of $PG_1(q)$.

(E17.3*)Prove that if $\beta(x, y) = 0$, then there exists z with $\beta(x, z), \beta(y, z) \neq 0$.

(E17.4*)Prove that if $\beta(x, y) \neq 0$, then there exists z with $\beta(x, z) = \beta(y, z) = 0$.

(E17.5)Every unitary transvection is contained in a conjugate of the group Q defined in Lemma ??. $(E17.6^*)$ Complete this proof.

 $(E17.7^*)$ Prove that SU₄(2) is generated by transvections.

(E17.8)Prove the result for q = 2 and $n \ge 4$.

(E17.9*)Prove that $PSU_3(2) \cong E \rtimes Q$ where E is an elementary abelian group of order 9 and Q is a quaternion group of order 8.

18. Orthogonal groups

(E18.1) $O_1(q) = \{\pm I\}$ and $O_2^{\varepsilon}(q) \cong D_{2(q-\varepsilon 1)}$. (E18.2*) Prove that

$$|\mathrm{SO}_n^{\varepsilon}(q)| = |\mathrm{PO}_n^{\varepsilon}(q)| = \frac{1}{(2, q-1)} |\mathrm{O}_n^{\varepsilon}(q)|$$

(E18.3)Let q be odd. Show that $PSp_{2m}(q)$ has $\lfloor \frac{m}{2} \rfloor + 1$ conjugacy classes of involutions, while $P\Omega_{2m+1}(q)$ has m conjugacy classes of involutions.

 $(E18.4^*)SO_n^{\varepsilon}(q)$ contains a transvection if and only if q is even.

(E18.5*)Prove that this definition yields an index 2 subgroup when $\varepsilon = +$ by showing that, in the natural action of G on \mathcal{U}_r , the set of maximal totally singular subspaces, any reflection acts as an odd permutation on \mathcal{U}_r .

(E18.6)Calculate the order of $|\Omega_n^{\varepsilon}(q)|$ when $(n, q, \varepsilon) \neq (4, 2, +)$.