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16. Symplectic groups

Throughout this section β is a non-degenerate alternating bilinear form on a 2r-dimensional vector space V
over a field k.

In §14.2.1 we saw that any such pair (V, β) admits a basis B = {e1, f1, . . . , er, fr} such that, for all i, j =
1, . . . , r,

β(vi, wj) =δij = −β(wj, vi),

β(vi, vj) =0 = β(w,wj).

This implies the following facts, which we leave as an exercise.

(E16.1*)Let β1 and β2 be non-degenerate alternating bilinear forms defined on a 2r-dimensional vector

space V over a field k. Then Isom(β1) and Isom(β2) (resp. Sim(β1) and Sim(β2)) are conjugate

subgroups of GL2r(k). Furthermore SemiSim(β1) and SemiSim(β2) are conjugate subgroups of ΓL2r(k).

These facts allow us to make the following definitions. We write K for the set of invertible scalar matrices over
k.

• Sp2r(k) is the isometry group of β;
• GSp2r(k) is the similarity group of β;
• ΓSp2r(k) is the semi-similarity group of β;
• PSp2r(k) = Sp2r(k)/(K ∩ Sp2r(k));
• PGSp2r(k) = GSp2r(k)/K;
• PΓSp2r(k) = ΓSp2r(k)/K

If k = Fq we may write Sp2r(q) for Sp2r(k) and likewise for the other groups.

(E16.2)|Sp2r(k) ∩K| =
�

2, if char(k) �= 2;
1, otherwise.

We can write Sp2r(k) in terms of matrices:

(22) Sp2r(k) = {X ∈ GL2r(k) | XAXT = X}
where A can be written in one of the following ways (each is obtained from the others by permutating the basis
appropriately):




0 1
−1 0

0 1
−1 0

. . .




,

�
0r Ir
−Ir 0r

�
,




1

. .
.

1
−1

. .
.

−1




.

In what follows we will study the action of Sp2r(k) on the points of its associated polar space, with a view
to applying Iwasawa’s criterion to this action. Note that, since β is alternating, all 1-dimensional subspaces of
V are totally isotropic, and thus they all arise as points of the associated polar space.

Lemma 16.1. Sp2(k)
∼= SL2(k).

Proof. Write elements of V = k2 as row vectors and define

β : V × V → k, (x, y) �→ det

�
x
y

�
.

It is clear that β is a non-degenerate alternating form. Now, if X ∈ GL2(k), then

β(xX, yX) = det

�
xX
yX

�
= det

��
x
y

�
X

�
= det

�
x
y

�
det(X).

Thus β(xX, yX) = β(x, y) if and only if det(X) = 1. �
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(E16.3)Give an alternative proof of Lemma 16.1 by showing that

XT

�
0 1
−1 0

�
X =

�
0 1
−1 0

�
⇐⇒ det(X) = 1.

Lemma 16.2. |Sp2r(q)| = qr
2

r�
i=1

(q2i − 1).

Proof. Clearly G = Sp2r(q) acts transitively on the set of r-tuples of hyperbolic pairs that span the space. On
the other hand if g ∈ G fixes such an r-tuple, then g = 1. Thus the action is regular and |G| is equal to the
number of r-tuples of hyperbolic pairs. Let us count these r-tuples.

If (v, w) is a hyperbolic pair, then the number of choices for v is q2r − 1; the number of vectors w in V \�v�⊥
is q2r − q2r−1 and, of these 1

q−1
(q2r − q2r−1) satisfy β(v, w) = 1.

If we fix (v, w) and continue in �v, w�⊥, which is a symplectic non-degenerate space of dimension 2r− 2 over
k, then the order formula follows by induction. �

Suppose that a group G acts transitively on a set Ω and let ω ∈ Ω. The permutation rank of G is the number
of orbits of Gω on Ω.

(E16.4*)Prove that the permutation rank is 2 if and only if G acts 2-transitively on Ω.

(E16.5)Prove that the permutation rank of G is equal to the number of orbits of G in the induced

action on Ω2.

Lemma 16.3. Sp2r(k) acts primitively on the set of points of its polar space. If r ≥ 2, then the permutation
rank is 3.

Proof. Witt’s Lemma implies that G = Sp2r(k) acts transitively on points. Any pair of distinct points either
spans a totally isotropic 2-space, or a hyperbolic plane. By Witt’s lemma, Sp2r(k) is transitive on the pairs of
each type. Thus G has three orbits in the induced action on Ω2 (the other being on the diagonal {ω, ω) | ω ∈
Ω}), i.e. the permutation rank is 3.

We can think of a non-trivial G-congruence on Ω as a subset of Ω2, in which case such a congruence must
be a union of the diagonal and one of the other two orbits on Ω2. We must prove that neither of these two
possibilities yields an equivalence relation. The following exercises do this by showing that, whichever union
we consider, the consequent relation is not transitive.

(E16.6*) Prove that if β(x, y) = 0, then there exists z with β(x, z), β(y, z) �= 0.

(E16.7*)Prove that if β(x, y) �= 0, then there exists z with β(x, z) = β(y, z) = 0.

�

Lemma 16.4. Let G = Sp2r(k) and ω ∈ Ω, the set of points of its polar space. Then

Gω
∼= Q� (Sp2r−2(k) ×GL1(k))

where Q is an abelian group isomorphic to the additive group (k2r−1,+).

Proof. We assume Sp2r(k) is defined via (22) and

(23) A =




1

. .
.

1
−1

. .
.

−1




.

Thus the associated basis is {v1, . . . , vr, w1, . . . , w1} and, since Sp2r(k) acts transitively on the set of points of
its polar space, we can take ω = �w1�.
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Now it is easy to see that G�w1� contains the following two subgroups:

(24)

H :=





g :=




a 0 · · · 0 0
0 0
... A

...
0 0
0 0 · · · 0 a−1




����� a ∈ F∗
q, A ∈ Sp2r−2(k)





;

Q :=





g :=




1 a1 · · · a2r−2 a2r−1

0 b2r−2

... I
...

0 b1
0 0 · · · 0 1




�����
a1, . . . , a2r−1, b1, . . . , b2r−2 ∈ k,

bi =

�
−ai, if i ≤ r − 1;
ai, otherwise;





.

The following facts are easy to check:

(1) Q ∩H = {1};
(2) |G�w1�| = |Q| · |H|;
(3) Q is isomorphic to the additive group (k2r−1,+);
(4) The map H → Sp2r−2(k) × GL1(q), g �→ (A, a) is an isomorphism.

The first two items imply that G�w1� = Q ·H. One can easily check that H normalizes Q, and thus Q is normal
in G�w1� and we conclude that G�w1� = Q�H. Now the last two items complete the proof. �

16.1. Symplectic transvections. Recall that a transvection on V is an element t ∈ GL(V ) such that

• rk(t− I) = 1;
• (t− I)2 = 0.

.

(E16.8*)Given a transvection t, there exists f ∈ V ∗ and a ∈ ker(f) such that

vT = v + (vf)a for all v ∈ V.

Let β be an alternating bilinear non-degenerate form on V . A symplectic transvection for β is a transvection
t that lies in Isom(β) ∼= Sp2r(q). If a and f are as in the previous exercise, we have

β(vt, wt) = β(v + (vf)a, w + (wf)a)

= β(v, w) + (wf)β(v, a) + (vf)β(a, w).

Thus t is symplectic if and only if (wf)β(v, a) = (vf)β(w, a) for all v, w ∈ V . Take w such that β(w, a) = 1
and let λ = wf , then we require that vf = λβ(v, a) and so a symplectic transvection for β is given by

v �→ v + λβ(v, a)a.

Conversely, one can check that a transvection of this form does indeed lie in Sp2r(k).

Lemma 16.5. The symplectic transvections generate the symplectic group G = Sp2r(k).

Proof. Lemma 16.1 implies that the result is true for n = 2. Now we induct on n. Define

D := �t | t is a transvection in G�.
Claim: D is transitive on V \{0}.

Proof of claim: Let u, v ∈ V \{0}. If β(u, v) �= 0, then the symplectic transvection

(25) x �→ x +
β(x, v − u)

β(u, v)
(v − u)

carries u to v. If β(u, v) = 0, then (E16.6) implies that we can choose w such that β(u, w), β(v, w) �= 0, and so
we can map u to w to v.
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Claim: D is transitive on the set of hyperbolic pairs in V .
Proof of claim: By the previous claim it is sufficient to prove that if (v, w1) and (v, w2) are hyperbolic pairs,
then there exists a transvection t ∈ Gv such that wg

1 = w2. If β(w1, w2) �= 0, then the following will do:

x �→ x +
β(x, w1 − w2)

β(w1, w2)
(w1 − w2).

If β(w1, w2) = 0, then go via v + w1 as before.
Now it is sufficient to prove that any symplectic transformation g fixing a hyperbolic pair (u, v) is a product

of symplectic transvections. It is easy to see that the stabilizer of (u, v) is the isometry group of �u, v�⊥ (cf.
(22)), a symplectic polar space of dimension 2r − 2. Induction now allows us to assume that g is a product of
transvections in Sp2r−2(q) and hence in Sp(q). �
Corollary 16.6. Sp2r(k) ≤ SL2r(k).

In the next lemma we will use the fact, found in the proof of Lemma 16.5, that Sp2r(k) is transitive on
hyperbolic pairs.

Lemma 16.7. Every symplectic transvection is contained in a conjugate of the group Q defined in Lemma 16.4.

Proof. We can use the definition for Q given by (??) provided we are careful to define Sp2r(k) with respect to
the matrix (23).

Now let t be a symplectic transvection and write

t : V → V, v �→ v + λβ(v, a)a

where λ ∈ k∗ and a ∈ V . Let w ∈ V be such that (w, a) is a hyperbolic pair. Now extending this to a
symplectic basis (with w as the first element of the basis and a the last which, in particular, is consistent with
(23)) and invoking Witt’s lemma, we know that we can conjugate by an element g of Sp2r(k) so that

tg =




1 0 · · · 0 λβ(v, a)
0 1 0
...

. . .
...

...
. . . 0

0 · · · · · · 0 1




.

Now t ∈ Qg−1
as required. �

Corollary 16.8. Let Q be the group defined in Lemma 16.4. Then

Sp2r(q) = �t | t is a transvection� = �Qg | g ∈ Sp2r(q)�.
Lemma 16.9. Symplectic transvections in Sp2r(k) are commutators in Sp2r(k) except if

(2r, |k|) ∈ {(2, 2), (2, 3), (4, 2)}.
Proof. Let t be a transvection, and let v ∈ V such that vt is linearly independent of v. It is easy to see that
U = �v, vt� is a hyperbolic plane, and that t acts trivially on U⊥.

Then t acts as a transvection on U and, by Lemma 12.5, t is a commutator in SL(U) provided |k| ≥ 3. Now
Lemma 16.1 implies that t is a commutator in Sp(U) and hence in G, as required.

To complete the proof we must deal with |k| ≤ 3. The following exercise does that.

(E16.9*)Prove that symplectic transvections in Sp6(2) and Sp(4, 3) are commutators.

�
Corollary 16.10. Sp2r(k) is perfect.

Iwasawa’s criterion and the preceding results allow us to conclude our big result.

Theorem 16.11. PSp2r(q) is simple unless

(2r, q) ∈ {(2, 2), (2, 3), (4, 2)}.
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We mentioned earlier that coincidences in order between simple groups, and isomorphisms between ‘different’
simple groups are important. The following theorem deals with all such coincidences, and isomorphisms,
between PSp2r(q) and the other simple groups that we have encountered thus far. In light of Lemma 16.1 we
restrict to r > 1.

Proposition 16.12. Let K and L be simple with K = PSp2r(q) (with r > 1) and L ∼= PSLm(q�) or Am. Then
K �∼= L.

It is worth dealing with the three cases listed in Theorem 16.11 for which Sp2r(q) is not simple. Lemma 16.1
and our results for SL2(q) immediately imply that

Sp2(2)
∼= SL2(2) ∼= S3;

Sp2(3)
∼= SL2(3) ∼= A4.

Our final lemma deals with the remaining case.

Lemma 16.13. Sp4(2)
∼= S6.

Proof. Let V be a 6-dimensional vector space over F2. After fixing a basis for V , observe that S6 acts on V by
permuting coordinates.

Define the form β(x, y) =
6�

i=1

xiyi and write j = (1, 1, 1, 1, 1, 1). Then �j�⊥ is of dimension 5 and contains j;

we define W := �j�⊥/�j�, a vector space of dimension 4.
Observe that the action of S6 on V induces, by restriction, a faithful action on W . Furthermore the form

β induces a form βW on W , since β(x, j) = 0 for x ∈ �j�⊥. Since β(x, x) = 0 for x ∈ �j�⊥, the form βW is
alternating and one can check that it is non-degenerate.

Since S6 preserves βW we obtain an embedding S6 ≤ Sp4(2). Since the two groups have the same order, the
result follows. �


