UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA
Topicos en la teoria de grupos Examen Parcial 2
I Semestre 2014 Nick Gill

Instructions: You may use any of the results covered in the lecture notes, including
in exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as
fully as possible, explicitly stating all other results that you use.

(1) Let V be a vector space of dimension n over a field k. Recall that PG,,_;(k) is the incidence
structure (V4,...,V,_1, 1) where, fori = 1,... ,n—1, V; is the set of subspaces of V' of dimension
¢ and

1= {(’Ul,...,Un_l) eVix---xV,_1 |U1 <LV < - - <Un_1}.

Prove the following facts:
(a) Any two elements of V} are incident with a unique element of Va;
(b) Any element of V5 is incident with at least three elements of V;;
(c) Let Py, P5, P3 be distinct elements of V; and let L, Lo, L3 be distinct elements of V5.
Suppose that
o Pl,P2<L3; Pl,P3<L2 and PQ,P3<L1.
e [, is an element of V5 that does not contain P;, P, or P; but does intersect L; and
Lo non-trivially.
Prove that L, intersects L3 non-trivially;
(d) Prove that if n = 3, then any two distinct elements of V5 are incident with a unique
element of Vi;
(e) Prove that if n > 3, then there exist two elements of V5 that are not both incident with
the same element of V;.

Answer.

(a) Let P, P, be two elements of V;. Clearly the only element of V, that contains them
both is the element (P, P).

(b) Let L € V5 be spanned by two vectors u and v. Then L is incident with the elements
(u), (v) and (u+ v), all of which are distinct.

(c) Let P, = (x;). The triangle condition implies that, for each i, L; = (z;,x;) where
1 # j # k # i. Now, by assumption, L, contains vectors zs + Axg and x; + pxs for
some A, p in the field k. Then L, contains the vector

A
which is a non-trivial vector in Ls. The result follows.
(d) Suppose that n = 3 and let L, Ly be distinct elements of V5. If Ly and Lo intersected
trivially, then one would have four linearly independent vectors, a contradiction. Thus
L, and L, intersect non-trivially. Since L; and L, are distinct, their intersection is of
dimension 1 - this intersection is the unique element of V; that is incident with both.
(e) Suppose that n < 3 and let L; be any element of V,. Let X be any complement of L,
in V and let Ly be a 2-dimensional subspace of X. Then L; and Ly intersect trivially,
and so are not both incident with the same element of V.

—%(1’2 + )\l’g) + (ZEl + ,qu’g) =T — —ﬁl’g

(2) Let G = GLy(3), the set of 2 by 2 invertible matrices over a field with 3 elements.

(a) Calculate the order of G;
1



(b) Prove that SLs(3) contains the derived group of G;

(c) Prove that G is solvable (or soluble);

(d) Recall that a finite nilpotent group is the direct product of p-groups. Prove that G is not
nilpotent.

Answer.
(a) |GL2(3)] = (3% = 1)(3% — 3) = 48.
(b) SLs(3) is a normal subgroup of GLy(3) of index 2. Hence the quotient GLo(3)/SLa(3)
is abelian and the result follows.
(c) We will show that there is a chain of subgroups

Go K> Ky K3 {1}

such that each successive quotient is abelian. We take K7 = SLo(3) - it is of index 2,
so is normal with abelian quotient.

Now SILs(3) has a centre K3 of order 2, thus the quotient K;/K3 is isomorphic to
PSLy(3) a group of order 12. Now PSLy(3) has either 1 or 4 Sylow 3-subgroups and
one can easily confirm that it has more than (1) (see the answer for part (3) below).
Thus PSLy(3) contains 8 elements of order 3. The remaining 4 elements must lie in a
unique Sylow 2-subgroup, thus we take K5 to be the this Sylow 2-subgroup (lifted to
SLs(3)). It has index 3 in PSLy(3) so is abelian, and K3 has index 4 in K5 so K3/K,
is abelian also, and the result follows.

An alternative answer: Simply observe that the smallest non-abelian simple group
is Alt(5) of order 60. Since |GLy(3)| < 60, composition factors of GLg(3) must be
abelian and so GLy(3) is solvable.

(d) If G is nilpotent, then, for any prime ¢ dividing |G|, G has a unique Sylow ¢-subgroup.
But letting t = 3, we see that a Sylow t-subgroup of GLy(3) has order 3 and there are
more than one of these: for instance, the set of all strictly upper triangular matrices
is one, and the set of all strictly lower triangular matrices is another.

(3) Let k be a field of characteristic 2. Let V' be a vector space of dimension n < oo over k and let
B:V xV — k be a symmetric bilinear form. Define

U:={zeV|pxx)=0}

(a) Prove that U is a vector subspace of V;
(b) Prove that, if & is finite and W is a 2-dimensional subspace of V| then UNW is non-trivial;
(c) Prove that, if k is finite, then dim(U) > n — 1.

Answer.
(a) Let xz,y € V satisfy f(z,z) =0 and let A\, u € k. Then
Bz + py, Az + py) = NB(z, 2) + MuB(z, y) + pAB(y, ) + N*B(y, y)
= A\uB(z,y) + pAB(y,x) =0
where the last equality follows from the fact that § is symmetric and k has characteristic
2. It follows immediately that U is a vector subspace of V.

(b) Let W = (u,v). If uw and v are isotropic, then the result follows immediately. Suppose
that this is not the case and observe that, for A € k,

Blu—+ v, u+ M) = B(u,u) + N2B(v,v).




Now, since k is finite, A — A\? is an automorphism and so is surjective. In particular,
there is a value of X\ such that \2 = f(sju;;). For this value of A\, u + Av is isotropic,
and the result follows. 7

(¢) Suppows that dim(U) < n — 2, and let W be any complement of U in V. Then
W N U = {1} which is a contradiction of (2). The result follows.

(4) Let V' be a vector space of dimension n over F,. Let W be a vector subspace of V' of dimension
m.
(a) Assume that m = 1 and describe the stabilizer of W in the group GL,(q).
(b) Do the same without the assumption that m = 1.
When I say ‘describe’ here, I want you to emulate what I did in lectures: First, take an
appropriate basis for V' and describe those invertible matrices that lie in the stabilizer of W.
Second describe the ‘“wisomorphism class’ of the stabilizer of W by identifying an important
normal subgroup, and giving the structure of the corresponding quotient.

Answer. [ give the answer for (2) only as (1) is a special case. Let {e1,...,e,} be a
basis for W and extend to a basis {ej,...,e,} of V. One can check that (writing elements
with respect to this basis) the stabilizer of W in GL,(q) is precisely the group

Al € GLm(Q); A2 € M(n—m)xm(Q)u A3 € GLn—m(Q)} .

Define

A2 € M(n—m)xm(Q) }

and observe that Uy is an elementary abelian normal subgroup of Gy of order ¢™(—™),

Define, in addition,

A1 € GLm(q>,A3 c Gan(q)}

and observe that Ly is a subgroup of Gy isomorphic to GL,,(¢) x GL,-n(g). Since
Gw = Uw - Ly and Uy N Ly = {1} we conclude that
G =Uw % L, = Uy x (GL,,,(q) x GL,—_n(q)),

where Uy is elementary abelian of order ¢™™ ).

(5) Do ONE of the following:
(a) Sketch a proof of Witt’s Lemma.
(b) Sketch a proof of the fact that PSL,(q) is simple for n > 2 unless (n, q) € {(2,3)(3,3)}.

Answer. This question is book-work, so an answer will not be included here.

(6) Let V be a 2-dimensional vector space over a field F,. Fix a basis for V' and define

Q:V = F,, x—= 2129




where x = (1, 3).

(a) Show that @; is a quadratic form, and write the polar form of Q.
(b) Show that (V, Q) is a hyperbolic line.

(c¢) Show that Isom(Q;) is a dihedral group of order 2(q — 1).
Define

QQ:V—>IFq,X»—>x%+x1x2+Cx§

where x = (21, 22) and f(t) = t* 4+t + ¢ is an irreducible polynomial over F,,.
(d) Show that @) is a quadratic form, and write the polar form of Q.

(e) Show that (V,Q2) is an anisotropic orthogonal space.
(f

) Define matrices,
-1 0 I
pu— p— C
A= () wan= (1),

and show that the maps x — x- A and x — x - B are isometries of (V,@3). Conclude that
Isom(Q)2) is non-abelian.

Answer.

(a) @1 is a homogeneous quadratic polynomial so is a quadratic form. Alternatively ob-
serve that, for any c € Fy,

Q(cx) = cxicay = 119 = AQ(X).

To complete the proof that (), is a quadratic form, we observe that the polar form of

Q1 is
Ai(x,y) = Qi(x+y) — Qi(x) — Qi(y)
= (21 +y1)(¥2 + ¥2) — 2122 — Y1y
= T1Y2 + T2y1
01

() g)
(b) Let u=(1,0) and v = (0, 1) and observe that (u,v) is a hyperbolic pair.
(c) Let g € GLa(q) and write g as a matrix with respect to the given basis:

_(a b
9=\¢ d
Now g is an isometry if and only if, for all x € V|, Q;(xg) = Q1(x). Now observe that
_ (axy + cxo
9= bxi + cxo
Thus ¢ is an isometry if and only if, for all xy,x5 € V,

(azy + cxe)(bxy + dxo) = z129.

If 1 = 0, then we obtain immediately that ¢ = 0 or d = 0. If 25 = 0, then we obtain
immediately that a = 0 or b = 0. In order that g is invertible we have, then, two cases:
(i) Suppose @ = d = 0. Then Q4(xg) = bcz1zy and g is an isometry if and only if

c=>b"1.
(ii) Suppose b = ¢ = 0. Then @Q(xg) = adxrizy and g is an isometry if and only if
a=d'.

We conclude immediately that Isom(Q;) is a group of order 2(¢ — 1). The set of
matrices from (a) clearly form a cyclic group of order ¢ — 1, while the set of matrices
in (b) all have order 2, thus the group is dihedral.




(d)

(e)

Again ()5 is a homogeneous quadratic polynomial so is a quadratic form. The polar
form of @), is

Bi(x,y) =Qi1(x+y) — Q1(x) — Qi (y)
=(x1 4+ 11)* + (21 + 31) (22 + 92) + (22 + 12)* — 2]
— T1Tg — Cx% - ?/% — Y1Y2 — C?J%

=221y1 + T1Y2 + Tay1 + 2CT2y2

T G 21{) y

Suppose that x = (z1,x2) € V is isotropic, i.e.
T} 4 2129 + (13 =0

If 25 # 0, then, dividing both sides by 3, we obtain that
(242 +¢=0
) T2

and 7! is a root of the polynomial f (t) =t*+2+ ¢ in F,. But f(¢) is irreducible and
we have a contradiction.

If, on the other hand, z5 = 0, then (1) implies that z; = 0 and the result follows.
Observe that x - A = (—y; — y2, y2), and therefore,

Qa(x- A) = (—y1 — 2)* + (=y1 — ¥2)y2 + Cu3

=y} +y1ye + CyE = Qu(x)

as required.
Similarly, observe that x - B = (y1, —y2 — %yl), and therefore,

Q2(x- B) =i + y1(—12 — %yl) +C(~y2 — %ylf
= y? + y1y2 + Cyi = Q2(x)

as required.
Finally observe that

-1 1 1,7 1
_ ¢ — (¢ ¢
AB (_1 %_ 1) and BA ( 1 _1) ,

Since these two matrices do not commute and both lie in Isom(Qs), we conclude that
Isom(()2) is non-abelian.

(7) Let V' be a vector space of dimension n over F, equipped with a non-degenerate alternating
bilinear form . Let G = Sp,,(¢) be the isometry group of 5. Let W be a vector subspace of V'

of dimension m and let Gy be the stabilizer of W in G.

(a) Assume that m = 1 and describe Gy;

(b) Assume that W is non-degenerate and describe Gyy;

(¢) Show that if Gy is maximal in G, then Gy = Gy where U is either a non-degenerate or
a totally isotropic subspace of V.

When I say ‘describe’ here, I want you to emulate what I did in lectures: First, take an
appropriate basis for V and describe those elements of Sp,(q) that lie in the stabilizer of W.




Second describe the ‘tsomorphism class’ of the stabilizer of W by identifying an important
normal subgroup, and giving the structure of the corresponding quotient.

Answer.
(a) Take an (ordered) basis for V' to be {vy,..., v, w,,..., w1 }. Since Sp,, (k) acts transi-
tively on the set of points of its polar space, we can take w = (wy).
One can check that G',,) contains the following two subgroups:

([ (a0 - 010 ’
0] 0
| |
H=<g=1| 1 4 | a € Fy, A € Spy,_5(k) ¢
| |
O 0
010 0lat )
2) : | a \
Ly - (=2 | G2r—1
0 i i bar—2 A1y...,Q09—1,b1,...,bo_o €k,
Q=Sg=| 1 - b_{ a, ifi<r—1;
| | T — .
0! by a;,  otherwise;
[ \0;0 -~ 0} 1 )
The following facts are virtually self-evident:
() QN H = {1}

(i) |Gwy| = |@Q| - [H| (using the orbit stabilizer theorem and the fact that G is
transitive on 1-dimensional subspaces of V);
(iii) @ is isomorphic to the additive group (k* 1, +);
(iv) The map H — Spo,—a(k) x GL1(q),9 — (A, a) is an isomorphism.
The first two items imply that G,y = @) - H. One can easily check that H normalizes
(), and thus () is normal in G,,) and we conclude that G,y = Q x H. Now the last
two items imply that

Go = Q X (Spy,—o(k) X GLa(F))

where @ is an abelian group isomorphic to the additive group (k*" 1, +).

(b) Observe that if W is non-degenerate, then V = W & W+ and both W and W+ are
non-degenerate. If v € V, then v = w; + wy for some w; € W,w, € Wt and 8(v) =
B(wy) + B(wsy). Thus if g preserves B(wy), then it preserves f(ws), i.e. Gy stabilizes
W and W+. We conclude that, if dim(1V) = 2s, then Gy = Spy,(q) X Spy(,_4(q)-

(c) Suppose that W is a vector subspace of V' that is neither non-degenerate, nor totally
isotropic. Then W is a degenerate symplectic subspace of V' and so Rad(W) is a proper
non-trivial subspace of W. By definition Rad(W) is totally isotropic and, clearly, if
W9 =W for some g € G, then Rad(W)? = Rad(W). Thus the stabilizer of W is a
subgroup of the stabilizer of Rad(1¥') and we are done.




