Instructions: You may use any of the results covered in the lecture notes, including in exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as fully as possible, explicitly stating all other results that you use.

(1) Let V be a vector space of dimension n over a field k. Recall that $PG_{n-1}(k)$ is the incidence structure $(V_1, \ldots, V_{n-1}, I)$ where, for $i = 1, \ldots, n-1$, V_i is the set of subspaces of V of dimension i and

$$I := \{ (v_1, \dots, v_{n-1}) \in V_1 \times \dots \times V_{n-1} \mid v_1 < v_2 < \dots < v_{n-1} \}.$$

Prove the following facts:

- (a) Any two elements of V_1 are incident with a unique element of V_2 ;
- (b) Any element of V_2 is incident with at least three elements of V_1 ;
- (c) Let P_1, P_2, P_3 be distinct elements of V_1 and let L_1, L_2, L_3 be distinct elements of V_2 . Suppose that
 - $P_1, P_2 < L_3; P_1, P_3 < L_2 \text{ and } P_2, P_3 < L_1.$
 - L_4 is an element of V_2 that does not contain P_1, P_2 or P_3 but does intersect L_1 and L_2 non-trivially.

Prove that L_4 intersects L_3 non-trivially;

- (d) Prove that if n = 3, then any two distinct elements of V_2 are incident with a unique element of V_1 ;
- (e) Prove that if n > 3, then there exist two elements of V_2 that are not both incident with the same element of V_1 .

Answer.

- (a) Let P_1, P_2 be two elements of V_1 . Clearly the only element of V_2 that contains them both is the element $\langle P_1, P_2 \rangle$.
- (b) Let $L \in V_2$ be spanned by two vectors u and v. Then L is incident with the elements $\langle u \rangle$, $\langle v \rangle$ and $\langle u + v \rangle$, all of which are distinct.
- (c) Let $P_i = \langle x_i \rangle$. The triangle condition implies that, for each i, $L_i = \langle x_j, x_k \rangle$ where $i \neq j \neq k \neq i$. Now, by assumption, L_4 contains vectors $x_2 + \lambda x_3$ and $x_1 + \mu x_3$ for some λ, μ in the field k. Then L_4 contains the vector

$$-\frac{\mu}{\lambda}(x_2 + \lambda x_3) + (x_1 + \mu x_3) = x_1 - -\frac{\mu}{\lambda}x_2$$

which is a non-trivial vector in L_3 . The result follows.

- (d) Suppose that n = 3 and let L_1, L_2 be distinct elements of V_2 . If L_1 and L_2 intersected trivially, then one would have four linearly independent vectors, a contradiction. Thus L_1 and L_2 intersect non-trivially. Since L_1 and L_2 are distinct, their intersection is of dimension 1 this intersection is the unique element of V_1 that is incident with both.
- (e) Suppose that n < 3 and let L_1 be any element of V_2 . Let X be any complement of L_1 in V and let L_2 be a 2-dimensional subspace of X. Then L_1 and L_2 intersect trivially, and so are not both incident with the same element of V_1 .
- (2) Let $G = GL_2(3)$, the set of 2 by 2 invertible matrices over a field with 3 elements.
 - (a) Calculate the order of G;

- (b) Prove that $SL_2(3)$ contains the derived group of G;
- (c) Prove that G is solvable (or soluble);
- (d) Recall that a finite nilpotent group is the direct product of p-groups. Prove that G is not nilpotent.

Answer.

- (a) $|GL_2(3)| = (3^2 1)(3^2 3) = 48.$
- (b) $SL_2(3)$ is a normal subgroup of $GL_2(3)$ of index 2. Hence the quotient $GL_2(3)/SL_2(3)$ is abelian and the result follows.
- (c) We will show that there is a chain of subgroups

$$G \triangleright K_1 \triangleright K_2 \triangleright K_3 \triangleright \{1\}$$

such that each successive quotient is abelian. We take $K_1 = SL_2(3)$ - it is of index 2, so is normal with abelian quotient.

Now $SL_2(3)$ has a centre K_3 of order 2, thus the quotient K_1/K_3 is isomorphic to $PSL_2(3)$ a group of order 12. Now $PSL_2(3)$ has either 1 or 4 Sylow 3-subgroups and one can easily confirm that it has more than (1) (see the answer for part (3) below). Thus $PSL_2(3)$ contains 8 elements of order 3. The remaining 4 elements must lie in a unique Sylow 2-subgroup, thus we take K_2 to be the this Sylow 2-subgroup (lifted to $SL_2(3)$). It has index 3 in $PSL_2(3)$ so is abelian, and K_3 has index 4 in K_2 so K_3/K_2 is abelian also, and the result follows.

An alternative answer: Simply observe that the smallest non-abelian simple group is Alt(5) of order 60. Since $|GL_2(3)| < 60$, composition factors of $GL_2(3)$ must be abelian and so $GL_2(3)$ is solvable.

- (d) If G is nilpotent, then, for any prime t dividing |G|, G has a unique Sylow t-subgroup. But letting t = 3, we see that a Sylow t-subgroup of $GL_2(3)$ has order 3 and there are more than one of these: for instance, the set of all strictly upper triangular matrices is one, and the set of all strictly lower triangular matrices is another.
- (3) Let k be a field of characteristic 2. Let V be a vector space of dimension $n < \infty$ over k and let $\beta: V \times V \to k$ be a symmetric bilinear form. Define

$$U := \{ x \in V \mid \beta(x, x) = 0 \}.$$

- (a) Prove that U is a vector subspace of V;
- (b) Prove that, if k is finite and W is a 2-dimensional subspace of V, then $U \cap W$ is non-trivial;
- (c) Prove that, if k is finite, then $\dim(U) \ge n 1$.

Answer.

(a) Let $x, y \in V$ satisfy $\beta(x, x) = 0$ and let $\lambda, \mu \in k$. Then

$$\beta(\lambda x + \mu y, \lambda x + \mu y) = \lambda^2 \beta(x, x) + \lambda \mu \beta(x, y) + \mu \lambda \beta(y, x) + \lambda^2 \beta(y, y)$$
$$= \lambda \mu \beta(x, y) + \mu \lambda \beta(y, x) = 0$$

where the last equality follows from the fact that β is symmetric and k has characteristic 2. It follows immediately that U is a vector subspace of V.

(b) Let $W = \langle u, v \rangle$. If u and v are isotropic, then the result follows immediately. Suppose that this is not the case and observe that, for $\lambda \in k$,

$$\beta(u + \lambda v, u + \lambda v) = \beta(u, u) + \lambda^2 \beta(v, v).$$

Now, since k is finite, $\lambda \mapsto \lambda^2$ is an automorphism and so is surjective. In particular, there is a value of λ such that $\lambda^2 = \frac{-\beta(u,u)}{\beta(v,v)}$. For this value of λ , $u + \lambda v$ is isotropic, and the result follows.

- (c) Suppose that $\dim(U) \leq n-2$, and let W be any complement of U in V. Then $W \cap U = \{1\}$ which is a contradiction of (2). The result follows.
- (4) Let V be a vector space of dimension n over \mathbb{F}_q . Let W be a vector subspace of V of dimension m.
 - (a) Assume that m = 1 and describe the stabilizer of W in the group $GL_n(q)$.
 - (b) Do the same without the assumption that m = 1.

When I say 'describe' here, I want you to emulate what I did in lectures: First, take an appropriate basis for V and describe those invertible matrices that lie in the stabilizer of W. Second describe the 'isomorphism class' of the stabilizer of W by identifying an important normal subgroup, and giving the structure of the corresponding quotient.

Answer. I give the answer for (2) only as (1) is a special case. Let $\{e_1, \ldots, e_m\}$ be a basis for W and extend to a basis $\{e_1, \ldots, e_n\}$ of V. One can check that (writing elements with respect to this basis) the stabilizer of W in $GL_n(q)$ is precisely the group

$$G_W := \left\{ \left(\begin{array}{c} A_1 & 0 \\ \overline{A_2} & \overline{A_3} \end{array} \right) \middle| A_1 \in \operatorname{GL}_m(q), A_2 \in M_{(n-m) \times m}(q), A_3 \in \operatorname{GL}_{n-m}(q) \right\}$$

Define

$$U_W := \left\{ \left(-\frac{I}{A_2} \mid 0 \\ \overline{I} \mid - \right) \middle| A_2 \in M_{(n-m) \times m}(q) \right\}$$

and observe that U_W is an elementary abelian normal subgroup of G_W of order $q^{m(n-m)}$. Define, in addition,

$$L_W := \left\{ \left(-\frac{A_1}{0} - \frac{1}{A_3} - \right) \middle| A_1 \in \mathrm{GL}_m(q), A_3 \in \mathrm{GL}_{n-m}(q) \right\}$$

and observe that L_W is a subgroup of G_W isomorphic to $\operatorname{GL}_m(q) \times \operatorname{GL}_{n-m}(q)$. Since $G_W = U_W \cdot L_W$ and $U_W \cap L_W = \{1\}$ we conclude that

$$G = U_W \rtimes L_w \cong U_W \rtimes (\operatorname{GL}_m(q) \times \operatorname{GL}_{n-m}(q)),$$

where U_W is elementary abelian of order $q^{m(n-m)}$.

(5) Do **ONE** of the following:

- (a) Sketch a proof of Witt's Lemma.
- (b) Sketch a proof of the fact that $PSL_n(q)$ is simple for $n \ge 2$ unless $(n,q) \in \{(2,3)(3,3)\}$.

Answer. This question is book-work, so an answer will not be included here.

(6) Let V be a 2-dimensional vector space over a field \mathbb{F}_q . Fix a basis for V and define

$$Q_1: V \to \mathbb{F}_q, \mathbf{x} \mapsto x_1 x_2$$

where $\mathbf{x} = (x_1, x_2)$.

- (a) Show that Q_1 is a quadratic form, and write the polar form of Q_1 .
- (b) Show that (V, Q_1) is a hyperbolic line.

(c) Show that $\text{Isom}(Q_1)$ is a dihedral group of order 2(q-1). Define

$$Q_2: V \to \mathbb{F}_q, \mathbf{x} \mapsto x_1^2 + x_1 x_2 + \zeta x_2^2$$

where $\mathbf{x} = (x_1, x_2)$ and $f(t) = t^2 + t + \zeta$ is an irreducible polynomial over \mathbb{F}_q .

- (d) Show that Q_2 is a quadratic form, and write the polar form of Q_2 .
- (e) Show that (V, Q_2) is an anisotropic orthogonal space.
- (f) Define matrices,

$$A = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -\frac{1}{\zeta} \\ 0 & -1 \end{pmatrix},$$

and show that the maps $\mathbf{x} \mapsto \mathbf{x} \cdot A$ and $\mathbf{x} \mapsto \mathbf{x} \cdot B$ are isometries of (V, Q_2) . Conclude that $\text{Isom}(Q_2)$ is non-abelian.

Answer.

(a) Q_1 is a homogeneous quadratic polynomial so is a quadratic form. Alternatively observe that, for any $c \in \mathbb{F}_q$,

$$Q(c\mathbf{x}) = cx_1cx_2 = c^2x_1x_2 = c^2Q(\mathbf{x}).$$

To complete the proof that Q_1 is a quadratic form, we observe that the polar form of Q_1 is

$$\beta_1(\mathbf{x}, \mathbf{y}) = Q_1(\mathbf{x} + \mathbf{y}) - Q_1(\mathbf{x}) - Q_1(\mathbf{y})$$

= $(x_1 + y_1)(x_2 + y_2) - x_1x_2 - y_1y_2$
= $x_1y_2 + x_2y_1$
= $\mathbf{x}^T \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y}$

- (b) Let $\mathbf{u} = (1,0)$ and $\mathbf{v} = (0,1)$ and observe that (\mathbf{u}, \mathbf{v}) is a hyperbolic pair.
- (c) Let $g \in GL_2(q)$ and write g as a matrix with respect to the given basis:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Now g is an isometry if and only if, for all $\mathbf{x} \in V$, $Q_1(\mathbf{x}g) = Q_1(\mathbf{x})$. Now observe that

$$\mathbf{x}g = \begin{pmatrix} ax_1 + cx_2 \\ bx_1 + cx_2 \end{pmatrix}$$

Thus g is an isometry if and only if, for all $x_1, x_2 \in V$,

$$(ax_1 + cx_2)(bx_1 + dx_2) = x_1x_2.$$

If $x_1 = 0$, then we obtain immediately that c = 0 or d = 0. If $x_2 = 0$, then we obtain immediately that a = 0 or b = 0. In order that g is invertible we have, then, two cases:

- (i) Suppose a = d = 0. Then $Q_1(\mathbf{x}g) = bcx_1x_2$ and g is an isometry if and only if $c = b^{-1}$.
- (ii) Suppose b = c = 0. Then $Q_1(\mathbf{x}g) = adx_1x_2$ and g is an isometry if and only if $a = d^{-1}$.

We conclude immediately that $\text{Isom}(Q_1)$ is a group of order 2(q-1). The set of matrices from (a) clearly form a cyclic group of order q-1, while the set of matrices in (b) all have order 2, thus the group is dihedral.

(d) Again Q_2 is a homogeneous quadratic polynomial so is a quadratic form. The polar form of Q_2 is

$$\beta_{1}(\mathbf{x}, \mathbf{y}) = Q_{1}(\mathbf{x} + \mathbf{y}) - Q_{1}(\mathbf{x}) - Q_{1}(\mathbf{y})$$

= $(x_{1} + y_{1})^{2} + (x_{1} + y_{1})(x_{2} + y_{2}) + \zeta(x_{2} + y_{2})^{2} - x_{1}^{2}$
 $- x_{1}x_{2} - \zeta x_{2}^{2} - y_{1}^{2} - y_{1}y_{2} - \zeta y_{2}^{2}$
= $2x_{1}y_{1} + x_{1}y_{2} + x_{2}y_{1} + 2\zeta x_{2}y_{2}$
= $\mathbf{x}^{T} \begin{pmatrix} 2 & 1 \\ 1 & 2\zeta \end{pmatrix} \mathbf{y}$

(e) Suppose that $\mathbf{x} = (x_1, x_2) \in V$ is isotropic, i.e.

$$c_1^2 + x_1 x_2 + \zeta x_2^2 = 0$$

If $x_2 \neq 0$, then, dividing both sides by x_2^2 , we obtain that

$$(\frac{x_1}{x_2})^2 + \frac{x_1}{x_2} + \zeta = 0$$

and $\frac{x_1}{x_2}$ is a root of the polynomial $f(t) = t^2 + 2 + \zeta$ in \mathbb{F}_q . But f(t) is irreducible and we have a contradiction.

If, on the other hand, $x_2 = 0$, then (1) implies that $x_1 = 0$ and the result follows. (f) Observe that $\mathbf{x} \cdot A = (-y_1 - y_2, y_2)$, and therefore,

$$Q_2(\mathbf{x} \cdot A) = (-y_1 - y_2)^2 + (-y_1 - y_2)y_2 + \zeta y_2^2$$

= $y_1^2 + y_1y_2 + \zeta y_2^2 = Q_2(\mathbf{x})$

as required.

(1)

Similarly, observe that $\mathbf{x} \cdot B = (y_1, -y_2 - \frac{1}{\zeta}y_1)$, and therefore,

$$Q_2(\mathbf{x} \cdot B) = y_1^2 + y_1(-y_2 - \frac{1}{\zeta}y_1) + \zeta(-y_2 - \frac{1}{\zeta}y_1)^2$$

= $y_1^2 + y_1y_2 + \zeta y_2^2 = Q_2(\mathbf{x})$

as required.

Finally observe that

$$AB = \begin{pmatrix} -1 & \frac{1}{\zeta} \\ -1 & \frac{1}{\zeta} - 1 \end{pmatrix} \text{ and } BA = \begin{pmatrix} \frac{1}{\zeta} + 1 & -\frac{1}{\zeta} \\ 1 & -1 \end{pmatrix},$$

Since these two matrices do not commute and both lie in $\text{Isom}(Q_2)$, we conclude that $\text{Isom}(Q_2)$ is non-abelian.

- (7) Let V be a vector space of dimension n over \mathbb{F}_q equipped with a non-degenerate alternating bilinear form β . Let $G = \operatorname{Sp}_n(q)$ be the isometry group of β . Let W be a vector subspace of V of dimension m and let G_W be the stabilizer of W in G.
 - (a) Assume that m = 1 and describe G_W ;
 - (b) Assume that W is non-degenerate and describe G_W ;
 - (c) Show that if G_W is maximal in G, then $G_W = G_U$ where U is either a non-degenerate or a totally isotropic subspace of V.

When I say 'describe' here, I want you to emulate what I did in lectures: First, take an appropriate basis for V and describe those elements of $\text{Sp}_n(q)$ that lie in the stabilizer of W.

Answer.

(a) Take an (ordered) basis for V to be $\{v_1, \ldots, v_r, w_r, \ldots, w_1\}$. Since $\text{Sp}_{2r}(k)$ acts transitively on the set of points of its polar space, we can take $\omega = \langle w_1 \rangle$. One can check that $G_{\langle w_1 \rangle}$ contains the following two subgroups:

$$H := \left\{ g := \begin{pmatrix} \frac{a \mid 0 \cdots 0 \mid 0}{0 \mid \dots 0 \mid 0} \\ \vdots \mid A \mid \vdots \\ \frac{0 \mid 0 \cdots 0 \mid a^{-1}}{0 \mid \dots 0 \mid a^{-1}} \end{pmatrix} \middle| a \in \mathbb{F}_q^*, A \in \operatorname{Sp}_{2r-2}(k) \right\};$$
$$Q := \left\{ g := \begin{pmatrix} \frac{1 \mid a_1 \cdots a_{2r-2} \mid a_{2r-1}}{0 \mid \dots 0 \mid a^{-1} \mid b_{2r-2}} \\ \vdots \mid I \mid \vdots \\ \frac{0 \mid 0 \cdots 0 \mid a^{-1} \mid b_{1}}{0 \mid \dots 0 \mid 1} \end{pmatrix} \middle| \begin{array}{c} a_1, \dots, a_{2r-1}, b_1, \dots, b_{2r-2} \in k, \\ b_i = \left\{ \begin{array}{c} -a_i, & \text{if } i \leq r-1; \\ a_i, & \text{otherwise}; \end{array} \right\} \right\}$$

The following facts are virtually self-evident:

- (i) $Q \cap H = \{1\};$
- (ii) $|G_{\langle w_1 \rangle}| = |Q| \cdot |H|$ (using the orbit stabilizer theorem and the fact that G is transitive on 1-dimensional subspaces of V);
- (iii) Q is isomorphic to the additive group $(k^{2r-1}, +)$;
- (iv) The map $H \to Sp_{2r-2}(k) \times GL_1(q), g \mapsto (A, a)$ is an isomorphism.

The first two items imply that $G_{\langle w_1 \rangle} = Q \cdot H$. One can easily check that H normalizes Q, and thus Q is normal in $G_{\langle w_1 \rangle}$ and we conclude that $G_{\langle w_1 \rangle} = Q \rtimes H$. Now the last two items imply that

$$G_{\omega} \cong Q \rtimes (\operatorname{Sp}_{2r-2}(k) \times GL_1(k))$$

where Q is an abelian group isomorphic to the additive group $(k^{2r-1}, +)$.

- (b) Observe that if W is non-degenerate, then $V = W \oplus W^{\perp}$ and both W and W^{\perp} are non-degenerate. If $v \in V$, then $v = w_1 + w_2$ for some $w_1 \in W, w_2 \in W^{\perp}$ and $\beta(v) = \beta(w_1) + \beta(w_2)$. Thus if g preserves $\beta(w_1)$, then it preserves $\beta(w_2)$, i.e. G_W stabilizes W and W^{\perp} . We conclude that, if dim(W) = 2s, then $G_W \cong \text{Sp}_{2s}(q) \times \text{Sp}_{2(r-s)}(q)$.
- (c) Suppose that W is a vector subspace of V that is neither non-degenerate, nor totally isotropic. Then W is a degenerate symplectic subspace of V and so $\operatorname{Rad}(W)$ is a proper non-trivial subspace of W. By definition $\operatorname{Rad}(W)$ is totally isotropic and, clearly, if $W^g = W$ for some $g \in G$, then $\operatorname{Rad}(W)^g = \operatorname{Rad}(W)$. Thus the stabilizer of W is a subgroup of the stabilizer of $\operatorname{Rad}(W)$ and we are done.

(2)