
UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA
Tópicos en la teoŕıa de grupos Examen Parcial 2
I Semestre 2014 Nick Gill

Instructions: You may use any of the results covered in the lecture notes, including
in exercises. Make sure that you state clearly the results that you use.

If a question asks you to prove a result from lectures, then you should sketch it as
fully as possible, explicitly stating all other results that you use.

(1) Let V be a vector space of dimension n over a field k. Recall that PGn−1(k) is the incidence
structure (V1, . . . , Vn−1, I) where, for i = 1, . . . , n−1, Vi is the set of subspaces of V of dimension
i and

I := {(v1, . . . , vn−1) ∈ V1 × · · · × Vn−1 | v1 < v2 < · · · < vn−1}.
Prove the following facts:
(a) Any two elements of V1 are incident with a unique element of V2;
(b) Any element of V2 is incident with at least three elements of V1;
(c) Let P1, P2, P3 be distinct elements of V1 and let L1, L2, L3 be distinct elements of V2.

Suppose that
• P1, P2 < L3; P1, P3 < L2 and P2, P3 < L1.
• L4 is an element of V2 that does not contain P1, P2 or P3 but does intersect L1 and
L2 non-trivially.

Prove that L4 intersects L3 non-trivially;
(d) Prove that if n = 3, then any two distinct elements of V2 are incident with a unique

element of V1;
(e) Prove that if n > 3, then there exist two elements of V2 that are not both incident with

the same element of V1.

Answer.
(a) Let P1, P2 be two elements of V1. Clearly the only element of V2 that contains them

both is the element 〈P1, P2〉.
(b) Let L ∈ V2 be spanned by two vectors u and v. Then L is incident with the elements
〈u〉, 〈v〉 and 〈u+ v〉, all of which are distinct.

(c) Let Pi = 〈xi〉. The triangle condition implies that, for each i, Li = 〈xj, xk〉 where
i 6= j 6= k 6= i. Now, by assumption, L4 contains vectors x2 + λx3 and x1 + µx3 for
some λ, µ in the field k. Then L4 contains the vector

−µ
λ

(x2 + λx3) + (x1 + µx3) = x1 −−
µ

λ
x2

which is a non-trivial vector in L3. The result follows.
(d) Suppose that n = 3 and let L1, L2 be distinct elements of V2. If L1 and L2 intersected

trivially, then one would have four linearly independent vectors, a contradiction. Thus
L1 and L2 intersect non-trivially. Since L1 and L2 are distinct, their intersection is of
dimension 1 - this intersection is the unique element of V1 that is incident with both.

(e) Suppose that n < 3 and let L1 be any element of V2. Let X be any complement of L1

in V and let L2 be a 2-dimensional subspace of X. Then L1 and L2 intersect trivially,
and so are not both incident with the same element of V1.

(2) Let G = GL2(3), the set of 2 by 2 invertible matrices over a field with 3 elements.
(a) Calculate the order of G;
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(b) Prove that SL2(3) contains the derived group of G;
(c) Prove that G is solvable (or soluble);
(d) Recall that a finite nilpotent group is the direct product of p-groups. Prove that G is not

nilpotent.

Answer.
(a) |GL2(3)| = (32 − 1)(32 − 3) = 48.
(b) SL2(3) is a normal subgroup of GL2(3) of index 2. Hence the quotient GL2(3)/SL2(3)

is abelian and the result follows.
(c) We will show that there is a chain of subgroups

G . K1 . K2 . K3 . {1}
such that each successive quotient is abelian. We take K1 = SL2(3) - it is of index 2,
so is normal with abelian quotient.
Now SL2(3) has a centre K3 of order 2, thus the quotient K1/K3 is isomorphic to
PSL2(3) a group of order 12. Now PSL2(3) has either 1 or 4 Sylow 3-subgroups and
one can easily confirm that it has more than (1) (see the answer for part (3) below).
Thus PSL2(3) contains 8 elements of order 3. The remaining 4 elements must lie in a
unique Sylow 2-subgroup, thus we take K2 to be the this Sylow 2-subgroup (lifted to
SL2(3)). It has index 3 in PSL2(3) so is abelian, and K3 has index 4 in K2 so K3/K2

is abelian also, and the result follows.
An alternative answer: Simply observe that the smallest non-abelian simple group
is Alt(5) of order 60. Since |GL2(3)| < 60, composition factors of GL2(3) must be
abelian and so GL2(3) is solvable.

(d) If G is nilpotent, then, for any prime t dividing |G|, G has a unique Sylow t-subgroup.
But letting t = 3, we see that a Sylow t-subgroup of GL2(3) has order 3 and there are
more than one of these: for instance, the set of all strictly upper triangular matrices
is one, and the set of all strictly lower triangular matrices is another.

(3) Let k be a field of characteristic 2. Let V be a vector space of dimension n <∞ over k and let
β : V × V → k be a symmetric bilinear form. Define

U := {x ∈ V | β(x, x) = 0}.

(a) Prove that U is a vector subspace of V ;
(b) Prove that, if k is finite and W is a 2-dimensional subspace of V , then U∩W is non-trivial;
(c) Prove that, if k is finite, then dim(U) ≥ n− 1.

Answer.
(a) Let x, y ∈ V satisfy β(x, x) = 0 and let λ, µ ∈ k. Then

β(λx+ µy, λx+ µy) = λ2β(x, x) + λµβ(x, y) + µλβ(y, x) + λ2β(y, y)

= λµβ(x, y) + µλβ(y, x) = 0

where the last equality follows from the fact that β is symmetric and k has characteristic
2. It follows immediately that U is a vector subspace of V .

(b) Let W = 〈u, v〉. If u and v are isotropic, then the result follows immediately. Suppose
that this is not the case and observe that, for λ ∈ k,

β(u+ λv, u+ λv) = β(u, u) + λ2β(v, v).
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Now, since k is finite, λ 7→ λ2 is an automorphism and so is surjective. In particular,

there is a value of λ such that λ2 = −β(u,u)
β(v,v)

. For this value of λ, u + λv is isotropic,

and the result follows.
(c) Suppows that dim(U) ≤ n − 2, and let W be any complement of U in V . Then

W ∩ U = {1} which is a contradiction of (2). The result follows.

(4) Let V be a vector space of dimension n over Fq. Let W be a vector subspace of V of dimension
m.
(a) Assume that m = 1 and describe the stabilizer of W in the group GLn(q).
(b) Do the same without the assumption that m = 1.
When I say ‘describe’ here, I want you to emulate what I did in lectures: First, take an
appropriate basis for V and describe those invertible matrices that lie in the stabilizer of W .
Second describe the ‘isomorphism class’ of the stabilizer of W by identifying an important
normal subgroup, and giving the structure of the corresponding quotient.

Answer. I give the answer for (2) only as (1) is a special case. Let {e1, . . . , em} be a
basis for W and extend to a basis {e1, . . . , en} of V . One can check that (writing elements
with respect to this basis) the stabilizer of W in GLn(q) is precisely the group

GW :=

{(
A1 0
A2 A3

) ∣∣∣∣∣A1 ∈ GLm(q), A2 ∈M(n−m)×m(q), A3 ∈ GLn−m(q)

}
.

Define

UW :=

{(
I 0
A2 I

) ∣∣∣∣∣A2 ∈M(n−m)×m(q)

}
and observe that UW is an elementary abelian normal subgroup of GW of order qm(n−m).
Define, in addition,

LW :=

{(
A1 0
0 A3

) ∣∣∣∣∣A1 ∈ GLm(q), A3 ∈ GLn−m(q)

}
and observe that LW is a subgroup of GW isomorphic to GLm(q) × GLn−m(q). Since
GW = UW · LW and UW ∩ LW = {1} we conclude that

G = UW o Lw ∼= UW o (GLm(q)×GLn−m(q)),

where UW is elementary abelian of order qm(n−m).

(5) Do ONE of the following:
(a) Sketch a proof of Witt’s Lemma.
(b) Sketch a proof of the fact that PSLn(q) is simple for n ≥ 2 unless (n, q) ∈ {(2, 3)(3, 3)}.

Answer. This question is book-work, so an answer will not be included here.

(6) Let V be a 2-dimensional vector space over a field Fq. Fix a basis for V and define

Q1 : V → Fq, x 7→ x1x2
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where x = (x1, x2).
(a) Show that Q1 is a quadratic form, and write the polar form of Q1.
(b) Show that (V,Q1) is a hyperbolic line.
(c) Show that Isom(Q1) is a dihedral group of order 2(q − 1).

Define

Q2 : V → Fq, x 7→ x21 + x1x2 + ζx22

where x = (x1, x2) and f(t) = t2 + t+ ζ is an irreducible polynomial over Fq.
(d) Show that Q2 is a quadratic form, and write the polar form of Q2.
(e) Show that (V,Q2) is an anisotropic orthogonal space.
(f) Define matrices,

A =

(
−1 0
−1 1

)
and B =

(
1 −1

ζ

0 −1

)
,

and show that the maps x 7→ x ·A and x 7→ x ·B are isometries of (V,Q2). Conclude that
Isom(Q2) is non-abelian.

Answer.
(a) Q1 is a homogeneous quadratic polynomial so is a quadratic form. Alternatively ob-

serve that, for any c ∈ Fq,
Q(cx) = cx1cx2 = c2x1x2 = c2Q(x).

To complete the proof that Q1 is a quadratic form, we observe that the polar form of
Q1 is

β1(x,y) = Q1(x + y)−Q1(x)−Q1(y)

= (x1 + y1)(x2 + y2)− x1x2 − y1y2
= x1y2 + x2y1

= xT
(

0 1
1 0

)
y

(b) Let u = (1, 0) and v = (0, 1) and observe that (u,v) is a hyperbolic pair.
(c) Let g ∈ GL2(q) and write g as a matrix with respect to the given basis:

g =

(
a b
c d

)
Now g is an isometry if and only if, for all x ∈ V , Q1(xg) = Q1(x). Now observe that

xg =

(
ax1 + cx2
bx1 + cx2

)
Thus g is an isometry if and only if, for all x1, x2 ∈ V ,

(ax1 + cx2)(bx1 + dx2) = x1x2.

If x1 = 0, then we obtain immediately that c = 0 or d = 0. If x2 = 0, then we obtain
immediately that a = 0 or b = 0. In order that g is invertible we have, then, two cases:

(i) Suppose a = d = 0. Then Q1(xg) = bcx1x2 and g is an isometry if and only if
c = b−1.

(ii) Suppose b = c = 0. Then Q1(xg) = adx1x2 and g is an isometry if and only if
a = d−1.

We conclude immediately that Isom(Q1) is a group of order 2(q − 1). The set of
matrices from (a) clearly form a cyclic group of order q − 1, while the set of matrices
in (b) all have order 2, thus the group is dihedral.
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(d) Again Q2 is a homogeneous quadratic polynomial so is a quadratic form. The polar
form of Q2 is

β1(x,y) =Q1(x + y)−Q1(x)−Q1(y)

=(x1 + y1)
2 + (x1 + y1)(x2 + y2) + ζ(x2 + y2)

2 − x21
− x1x2 − ζx22 − y21 − y1y2 − ζy22

=2x1y1 + x1y2 + x2y1 + 2ζx2y2

=xT
(

2 1
1 2ζ

)
y

(e) Suppose that x = (x1, x2) ∈ V is isotropic, i.e.

(1) x21 + x1x2 + ζx22 = 0

If x2 6= 0, then, dividing both sides by x22, we obtain that

(
x1
x2

)2 +
x1
x2

+ ζ = 0

and x1
x2

is a root of the polynomial f(t) = t2 + 2 + ζ in Fq. But f(t) is irreducible and
we have a contradiction.
If, on the other hand, x2 = 0, then (1) implies that x1 = 0 and the result follows.

(f) Observe that x · A = (−y1 − y2, y2), and therefore,

Q2(x · A) = (−y1 − y2)2 + (−y1 − y2)y2 + ζy22

= y21 + y1y2 + ζy22 = Q2(x)

as required.
Similarly, observe that x ·B = (y1,−y2 − 1

ζ
y1), and therefore,

Q2(x ·B) = y21 + y1(−y2 −
1

ζ
y1) + ζ(−y2 −

1

ζ
y1)

2

= y21 + y1y2 + ζy22 = Q2(x)

as required.
Finally observe that

AB =

(
−1 1

ζ

−1 1
ζ
− 1

)
and BA =

(
1
ζ

+ 1 −1
ζ

1 −1

)
,

Since these two matrices do not commute and both lie in Isom(Q2), we conclude that
Isom(Q2) is non-abelian.

(7) Let V be a vector space of dimension n over Fq equipped with a non-degenerate alternating
bilinear form β. Let G = Spn(q) be the isometry group of β. Let W be a vector subspace of V
of dimension m and let GW be the stabilizer of W in G.
(a) Assume that m = 1 and describe GW ;
(b) Assume that W is non-degenerate and describe GW ;
(c) Show that if GW is maximal in G, then GW = GU where U is either a non-degenerate or

a totally isotropic subspace of V .
When I say ‘describe’ here, I want you to emulate what I did in lectures: First, take an
appropriate basis for V and describe those elements of Spn(q) that lie in the stabilizer of W .
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Second describe the ‘isomorphism class’ of the stabilizer of W by identifying an important
normal subgroup, and giving the structure of the corresponding quotient.

Answer.
(a) Take an (ordered) basis for V to be {v1, . . . , vr, wr, . . . , w1}. Since Sp2r(k) acts transi-

tively on the set of points of its polar space, we can take ω = 〈w1〉.
One can check that G〈w1〉 contains the following two subgroups:

(2)

H :=


g :=


a 0 · · · 0 0
0 0
... A

...
0 0
0 0 · · · 0 a−1


∣∣∣∣∣ a ∈ F∗q, A ∈ Sp2r−2(k)


;

Q :=


g :=


1 a1 · · · a2r−2 a2r−1
0 b2r−2
... I

...
0 b1
0 0 · · · 0 1


∣∣∣∣∣
a1, . . . , a2r−1, b1, . . . , b2r−2 ∈ k,

bi =

{
−ai, if i ≤ r − 1;
ai, otherwise;


.

The following facts are virtually self-evident:
(i) Q ∩H = {1};

(ii) |G〈w1〉| = |Q| · |H| (using the orbit stabilizer theorem and the fact that G is
transitive on 1-dimensional subspaces of V );

(iii) Q is isomorphic to the additive group (k2r−1,+);
(iv) The map H → Sp2r−2(k)×GL1(q), g 7→ (A, a) is an isomorphism.

The first two items imply that G〈w1〉 = Q ·H. One can easily check that H normalizes
Q, and thus Q is normal in G〈w1〉 and we conclude that G〈w1〉 = QoH. Now the last
two items imply that

Gω
∼= Qo (Sp2r−2(k)×GL1(k))

where Q is an abelian group isomorphic to the additive group (k2r−1,+).
(b) Observe that if W is non-degenerate, then V = W ⊕W⊥ and both W and W⊥ are

non-degenerate. If v ∈ V , then v = w1 + w2 for some w1 ∈ W,w2 ∈ W⊥ and β(v) =
β(w1) + β(w2). Thus if g preserves β(w1), then it preserves β(w2), i.e. GW stabilizes
W and W⊥. We conclude that, if dim(W ) = 2s, then GW

∼= Sp2s(q)× Sp2(r−s)(q).
(c) Suppose that W is a vector subspace of V that is neither non-degenerate, nor totally

isotropic. Then W is a degenerate symplectic subspace of V and so Rad(W ) is a proper
non-trivial subspace of W . By definition Rad(W ) is totally isotropic and, clearly, if
W g = W for some g ∈ G, then Rad(W )g = Rad(W ). Thus the stabilizer of W is a
subgroup of the stabilizer of Rad(W ) and we are done.


