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Representation and Character Theory of the Small

Mathieu Groups

Sam Hughes

Abstract

The central object of group representation theory over the complex field is the character

table of a group. In this project, we attempt to calculate the character table of a group

that acts sharply 5-transitively on 12 points. We obtain this result indirectly by using the

fact that the Mathieu group M12 is the only sharply 5-transitive group, then calculating the

character table of M12. We also give detailed calculations of the character tables of M9, M10

and M11.

In order to calculate the character tables, we first construct the small Mathieu groups

using the theory of transitive extensions of groups. Next, we calculate the conjugacy classes

of the small Mathieu groups, a result which has not been proved in the literature. Finally,

we use various techniques from group character theory to construct the character tables. To

demonstrate the use of the tables, we prove that M11 and M12 are simple. All calculations

have been done without the aid of a computer.
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Chapter 1

Introduction

1.1 History and Context

Representation theory is generally considered to be the study of representing algebraic ob-

jects as sets of linear transformations of vector spaces. Concretely, this amounts to writing

down the elements of algebraic structures as matrices. In recent years this has seen many

generalisations, notably through the use of functors from category theory. The motivation

for representation theory comes from the idea of moving a complex problem to a domain that

is easier to work with.

Historically, the representation theory of finite groups was developed with the same mo-

tivation: Turning problems in group theory into problems in linear algebra. The study

began with Cauchy and Dedekind’s work in the early 1800s on what later became char-

acter theory [Cau41, Ded85, Tau33]. However, Frobenius was the first mathematician to

study the problem for non-abelian groups; he developed most of the theory in the 1890s

[Fro10, Fro96a, Fro96b]. The theory was later developed by Burnside and Schur throughout

the early 1900s. An in-depth discussion of the history can be found in the book ‘Pioneers

of Representation Theory’ by Curtis [Cur99] or in an article ‘The Origins of the Theory of

Group Characters’ by Hawkins [Haw71].

At this point, it should be noted that group representation theory naturally splits into

two domains of inquiry. The first is the study of modular representation and Brauer’s theory

of blocks. This can be considered to be the representation theory of finite groups over a

field of positive characteristic. The second field is the complex representation theory of finite

groups. Here the central object is the character table of a group. This table characterises

every complex representation of a group and encodes many interesting properties about the

group. For example, the character table shows the existence of any normal subgroups.

Both domains are still active areas of mathematics with many unsettled conjectures,
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such as Brauer’s height zero conjecture [Bra56], Dade’s conjecture [Dad92] and the McKay

conjecture [McK72]. Specifically related to the complex side, for larger groups, calculating

the character table comes with great difficulty.

Throughout this project, we will develop the complex representation theory of finite

groups. Our goal will be to calculate the character tables of the small Mathieu groups, two

of which are part of the collection of the now famous sporadic simple groups. This collection

of groups contains every finite simple group that is not the member of an infinite family of

finite simple groups.

The groups referred to as the small Mathieu groups will be denoted M9, M10, M11 and

M12. In 1861, Mathieu constructed the groups M12 and M24 [Mat61, Mat73]. There was

some controversy regarding his construction. Many mathematicians believed that the groups

he had constructed were actually certain alternating groups and not in fact new at all. In

1897 Miller incorrectly claimed that M24 did not exist [Mil97], he later corrected his mistake

and gave a proof that the groups were simple [Mil00].

There are now many constructions of the Mathieu groups, presenting them as automor-

phisms of various objects [CCN+85]. The earliest is due to Witt in the 1930s, who constructed

them as the automorphism groups of certain Steiner systems [Wit38a, Wit38b].

The Mathieu groups M11, M12, M22, M23 and M24 were the first of the 26 sporadic simple

groups to be discovered. That is, these were the first groups without any non-trivial normal

subgroups to not belong to an infinite family. The Mathieu groups have been linked to many

beautiful mathematical objects, including the binary and ternary Golay codes and the Leech

lattice [MS85, CCN+85, Bar93, CS99].

In 1904, Frobenius calculated the character table of M12 and M24 [Fro04]. However, many

of his methods are unclear, for example, it is not mentioned how he obtained the conjugacy

classes of the groups, or what properties he uses from Mathieu’s constructions. Therefore,

it seems desirable to recreate Frobenius’s research, giving a full description of how a 19th-

century mathematician could perform in-depth calculations on a group with 95040 elements.

1.2 Project Structure

The aim of this project was to calculate the character tables of the small Mathieu groups.

More specifically, our initial aim was to prove the following theorem: “Let G be a sharply

5-transitive group. Then the character table of G is...”. Unfortunately, a direct proof was

not possible given the time constraints. Instead, we need to use the fact that M12 is the only

sharply 5-transitive group, and then use particular facts about M12.

Chapters 2 to 5 give a self-contained treatment of group representation and character
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theory; developing the tools needed to calculate the character tables of the small Mathieu

groups. It is assumed that the reader has some familiarity with linear and abstract algebra.

Chapter 6 outlines a construction of M9, M10, M11 and M12 based on the exercises in

Biggs and Whites’ book [BW79, p. 33].

Chapter 7 details the calculations of the conjugacy classes of the small Mathieu groups.

The treatment here begins by trying to calculate the conjugacy classes for a group which acts

sharply 5-transitively on 12 points before falling back on the construction given in Chapter

6. The work in this chapter is completely original.

Finally, Chapter 8 gives a full and completely original account of the calculations of the

character tables of the small Mathieu groups. One key result following from these calculations

is that M11 and M12 are simple.

1.3 A Remark on Methods

Often in mathematics, the process of proving or calculating a result is very different from

the way that the result is presented. This is especially true when it comes to calculating

character tables for a finite group, here the process is more of an art than an exact science.

There are numerous ways of calculating irreducible characters of a finite group. How-

ever, these methods often give irreducible characters that are already known or compound

characters that cannot be broken down. Throughout Chapter 8, we will note in a few places

where we have calculated something we already know, or cannot use. These notes are not

a complete list of the attempts to calculate the characters of M12. To give a flavour, we

shall list several more calculations that were performed in an attempt to find the irreducible

characters of M12:

• Induction from a subgroup isomorphic to Alt(6), to M12;

• Induction from M10 to M12;

• Induction from a subgroup isomorphic to AGL2(3), to M12;

• Tensor products of known characters at every stage;

• Restriction of larger dimensional characters from Sym(12).

The calculations that are presented in Chapter 8 seem (to us) to be the most efficient route

to calculating the character tables of the small Mathieu groups.
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Chapter 2

Categories and Conjugacy Classes

In this chapter we will develop the notion of a group action through the use of category

theory. We will then use the group action to develop several concepts from group theory;

specifically, conjugacy classes and group extensions. These ideas are fundamental in later

chapters and underpin all of group representation theory.

2.1 A Brief Introduction to Categories

Category theory is a relatively modern development of abstract mathematics, originally de-

veloped in Eilenberg and Maclane’s seminal paper [EM45]. We will only be using a few ideas

from the field and the treatment will be mostly adapted from ‘An Introduction to Category

Theory’ by H. Simmons [Sim11].

Definition 2.1. [Gil16, p. 4] Category

A category C consists of a class1 Obj of abstract elements called objects and a class Arw of

abstract elements called arrows. Each arrow has an assignment of source: Arw → Obj and

target : Arw → Obj; these are represented in the obvious way:

A B
f

Two arrows are composable if the first arrow’s target is exactly the second arrow’s source, if

1The idea of a class here is rather vague and deliberately so; by not defining the collection of things as a
set we can skirt around Russell’s paradox.
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this is the case we also get a composite arrow:

A B

C
fg

f

g

Finally for every object A in C there exists an identity mapping 1A such that:

A A
1A

A Category must satisfy two axioms:

(C1) The triple product of arrows f(gh) is defined if and only if (fg)h is defined and when

either is defined, it must satisfy the associative law: f(gh) = (fg)h.

(C2) Consider an arrow f from A to B and two compatible identity arrows as follows:

A A B B
1A f 1B

Then we require that f1A = f = 1Bf holds2.

A category D is a subcategory of C if the class of objects of D is a subclass of the class of

objects of C.

Example 1. Examples of Categories

1. The following is an exercise in ‘An Introduction to Category Theory’ by H. Simmons

[Sim11, p. 7]. Consider a category Set where the objects are sets and the arrows are

functions between sets. Let X and Y be sets with identity arrows 1X and 1Y and let

f, g and h be functions. Then the two axioms are easy to verify:

(C1) Assume the triple product f(gh) is defined with X as the source of f and let

x ∈ X then

(fg)h(x) = fg(h(x)) = f(g(h(x)) = f(gh(x))

(C2) Now assume that f maps X to Y then

(f1X)(x) = f(1X(x)) = f(x) and 1Y f(x) = 1Y (f(x)) = f(x)

2. Now consider a category Grp where the objects are groups and the arrows are group

homomorphisms. The axioms are again easy to verify as morphisms can be composed.

2As a clarification, we are applying functions on the left here and will continue to do so.
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Let g, h be elements of a group G. Then we have

φψ(g · h) = φ(ψg · ψh) = φψ(g) · φψ(h).

Every group has a trivial automorphism, hence, φ(1Gg) = φ(g) and 1φ(G)φ(g) = φ(g).

3. An important subcategory of Grp is Ab, the category of Abelian groups.

4. This example is adapted from ‘Category Theory in Context’ by Emily Riehl [Rie16,

p. 5]. We can now introduce the idea of a single object category, where the category

has one object ? and the arrows are mapping the object to itself.

A particularly imporant class of examples is given by considering a single group G as

a category CG. The category has arrows which are precisely the elements of the group.

Composition is defined by composition of group elements and the identity arrow is the

identity of the group. In fact we can give an alternative definition of a group in the

language of categories, “a group is a single object category in which all of the arrows

are isomorphisms”.

After the previous example it may be worth stating exactly what we mean by an isomor-

phism. If we have a pair of arrows A B
f

and B A
g

such that gf = 1A and

fg = 1B, that is f and g for an inverse pair, then f and g are each called an isomorphism.

If an arrow has an equal source and target, for example A A
f

, then it is called an

endomorphism. If an arrow is both an endomorphism and an isomorphism then it is an

automorphism.

Lemma 2.2. Given an object X in a category C the set of all automorphisms of X forms a

group AutC(X) called the automorphism group of X.

Proof. The proof simply involves checking the axioms of a group hold. As composition of

two automorphisms is an automorphism, the set is closed under composition. The axioms

of identity and associativity are immediate from the definition of a category. As automor-

phisms are isomorphisms, every automorphism has an inverse isomorphism which is also an

endomorphism. Hence, AutC(X) is a group under composition.

Example 2. Automorphism Groups

Given a finite set ∆, the automorphism group in Set will be Sym(∆). For an n-dimensional

vector space V over a field Fq, where q = pk, the automorphism group in VectFq (the category

of vector spaces over a field Fq) is GLn(q). However, AutGrp(V ) = GLkn(p).
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The automorphism group in the category Graph of a regular n-gon is isomorphic to D2n,

the dihedral group on n points. However, in the category Set the automorphism group will

be Sym(n).

Clearly, the choice of category is important. Another example of this is the automorphism

group of a group in Grp is Aut(G) but in Set it is Sym(G). A specific example of this is

AutGrp(Cp) = Cp−1 for p a prime, whereas AutSet(Cp) = Sym(p).

Definition 2.3. [Gil16, p. 5] Hom-Space

In a category C the class of morphisms from an object X to an object Y is called the Hom-

Space and is denoted HomC[X, Y ].

We should note that all of the categories we will be working with are termed ‘locally

small’. This means that between any two objects there is only a sets worth of morphisms,

which in turn means we can treat a Hom-space as a set. One last idea we will use from

category theory is the idea of a Short Exact Sequence. First, we define the zero object to be

the trivial object in a category C and we will denote this by 0, or if the category is Grp then

by {1}.
0 N A Q 0

f1 f2 f3 f4
(2.1)

Definition 2.4. [Hat02, p. 113] Short Exact Sequence

The sequence of objects and arrows in (2.1) is called a Short Exact Sequence if Ker(fi+1) =

Im(fi). We describe the sequence as split if there exists an arrow g : Q → A such that

f3g = 1Q, where 1Q is the identity arrow of Q.

Example 3. Groups and Short Exact Sequences

In the category Grp anytime the fundamental theorem of homomorphisms can be applied

to a group G we get a short exact sequence. Let G have a normal subgroup N such that

G/N ∼= Q; then the following diagram is a short exact sequence. Here τ is the inclusion map

and π is the projection map.

{1} N G Q {1}τ π

We shall consider some specific examples of this. First consider the dihedral group on 4

points D8, it is easy to check that D8 has a cyclic normal subgroup of size 4. From this we

can construct the following short exact sequence.

{1} C4 D8 C2 {1}

This sequence is split, however there are examples in Grp that do not split. C4 is the smallest

group that does not split and Q8 (the Quaternion group) is the smallest non abelian group
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that does not split. We will discuss some of the necessary conditions for a sequence to split

in Section 2.3.3.

2.2 Group Actions

Parts of this section have been adapted from [Gil16], notably the definition and properties

of actions and G-Sets, and Theorem 2.8.

Definition 2.5. [Gil16, p. 9] Group Actions and G-Sets

A (left) action of G on ∆ is a function ϕ : G ×∆ → ∆, where we write the image of (g, δ)

as gδ. We require ϕ to satisfy two axioms:

(A1) ∀δ ∈ ∆, 1G · δ = δ, (where 1G denotes the identity of G);

(A2) ∀g, h ∈ G and ∀δ ∈ ∆, (g · h)δ = g(h · δ).

A G-Set (G,∆, ϕ) is a triple containing a group G, a set ∆ and an action of G on ∆.

Example 4. Group Actions

1. Consider Sym(n) acting on a set X = {1, . . . , n}. A ‘natural’ action of Sym(n) is to

simply apply a permutation g ∈ Sym(n) to an element x ∈ X. Formally we can define

ϕ : (g, x) 7→ gx. Now take x = 1 and g = (317) then ϕ((317), 1) = (317) · 1 = 7.

2. Now consider the dihedral goup on 6 points, D12 = 〈(123456), (12)(36)(45)〉 acting on

a hexagon with each vertex labeled 1 to 6. The permutation (123456) corresponds to

a rotation of π
3

radians and (12)(36)(45) corresponds to a flip. Simply applying the

permutation to the vertices will rotate or reflect the shape.

The following Lemma was an exercise in [Gil16, p. 6].

Lemma 2.6. A class of objects consisting of G-Sets and a class of arrows represented by a

pair (α, f), where α is a group homomorphism and f is a total function, forms a category

called GSet.

Proof. To begin the proof we need to show how arrow composition works. Consider the

following commutative diagram:

G×∆ H × Ω K × Λ

∆ Ω Λ

(α,f)

ϕ

(η,g)

ψ θ

f g
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The composite arrow mapping G× Ω to K × Λ is given by (η, g)(α, f) = (ηα, gf). Now we

can show the associativity axiom (C1):

(τ, h)((η, g)(α, f)) = (τ, h)(ηα, gf)

= (τηα, hgf)

= ((τη)α, (hg)f)

= (τη, hg))(α, f)

= ((τ, h)(η, g))(α, f)

Each object (G,∆, ϕ) has an identity arrow (1G, 1∆). Now, the identity axiom amounts

to checking the identity axiom (C2) for Grp and Set simultaneously. As these have been

individually checked in Example 1, the result follows immediately.

Of course, groups can act on more than just sets. If we replace the set ∆ in Definition

2.5 with an object3 X from a category C, the notion of a group action still holds. In fact,

by carefully picking the category C we will be able to find ‘structure preserving actions’ on

some objects.

Definition 2.7. Groups acting on objects

Let G be a group and let X be an object in a category C. Then G acts on X as an object in

C if every group element induces an arrow in C and these arrows are automorphisms of X in

C.

The following theorem was an exercise in [Gil16].

Theorem 2.8. Let (G,X, ϕ) be a G-Set with G acting on X as an object in a category C by

an action ϕ. Define the following functions:

ϕ∗g : X → X by x 7→ g(x);

ψ† : G×X → X by (g, x) 7→ ψ(g)(x).

Then the function ϕ∗ : G → AutC(X) by g 7→ ϕ∗g is a group homomorphism. Conversely,

given a group homomorphism ψ : G → AutC(X), then the function ψ† : G × X → X is an

action of G on X as an object in C. Moreover, (ϕ∗)† = ϕ and (ψ†)∗ = ψ.

3The only objects we will be considering are ‘structured sets’; that is, sets with additional structure. The
additional structure could be through operators or relations on elements of the set. Examples of these include
groups, rings, vectors spaces and graphs.
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Proof. Since the map ϕ∗g is an arrow in C for every g then it is immediate that ϕ∗g and ϕ∗g−1

are inverse pairs of isomorphisms. In particular, ϕ∗ : G → AutC(X) is well defined. Now

consider

ϕ∗(gh) = ϕ∗gh = (x 7→ gh · x) = (x 7→ g(h · x)) = ϕ∗gϕ
∗
h = ϕ∗(g)ϕ∗(h).

Thus, ϕ∗ is a group homomorphism.

Conversely, given ψ : G→ AutC(X) we need to check the properties of an action for ψ†.

We know that ψ(1) = 1 ∈ AutC(X) hence ∀x ∈ X we have ψ†(1, x) = 1 · x = x. Now take

g, h ∈ G, then,

gh · x = ψ†(gh, x) = ψ(gh) · x = ψ(g)ψ(h) · x = ψ(g)(ψ(h) · x) = g(h · x)

Thus, ψ† is an action of G on X as an object in C. Moreover,

(ϕ∗)†(g, x) = ϕ∗(x 7→ g · x) = ϕ∗g = ϕ(g, x)

and

(ψ†)∗(g) = ψ†(ϕ∗g) = ψ(x 7→ g · x) = ψ(g).

The theorem we have just proved is fundamental to the study of group actions and has

an immediate consequence, if G has an action on an object X in a category C then we

immediately get a homomorphism into AutC(X). For example, if G is acting on a finite

dimensional vector space V in VectF, we immediately get a homomorphism of G into GL(V ).

Now we have laid the framework for group actions, we are at liberty to discuss some of

the properties these actions can have. Consider a G-Set (G,∆, ϕ) then:

• The set of elements from G that fix a δ ∈ ∆ is called the stabiliser of δ in G. Symbol-

ically Gδ = {g ∈ G : g · δ = δ}. Note that Gδ forms a subgroup of G.

• The set of elements from G that fix every element of ∆ is called the kernel of the action,

denoted by Ker(ϕ) = G(∆) = {g ∈ G : g · δ = δ ∀δ ∈ ∆}. This kernel is exactly the

same as the kernel of the corresponding homomorphism given by Theorem 2.8; by the

fundamental theorem of homomorphisms it is a normal subgroup of G.

• The orbit of δ under G is given by δG = {g ·δ : g ∈ G}; this is exactly the set of elements

in ∆ that elements of G can move δ to. Note, the set of orbits partitions ∆.

An action is described as:

10



• Transitive, if the action only has one orbit; that is δG = ∆. Alternatively ∀δi, δj ∈ ∆

there exists g ∈ G such that g · δi = δj.

• Faithful, if the only element of G that fixes every element of ∆ is the identity, symbol-

ically ∀g 6= 1G ∈ G there exists δ ∈ ∆ such that g · δ 6= δ.

• Semi-regular, if the only element of g ∈ G that fixes δ ∈ ∆ for all δ ∈ ∆, is the identity

of G. Alternatively, if δ ∈ ∆ and g · δ = δ then g = 1.

• Regular, if it is both transitive and semi-regular.

Theorem 2.9. Orbit Stabiliser Theorem

Let G be a group acting on a finite object X in a category C and let x ∈ X, then |G| =

|xG||Gx|.

For a proof the reader is referred to any standard text on group theory such as Durbin’s

book ‘Modern Algebra’ [Dur09, p. 245].

Example 5. Some actions of Sym(4)

We will now consider some of the actions of G = Sym(4) and some of its subgroups. Let

∆ = {1, 2, 3, 4} and consider C4 = 〈(1234)〉 ≤ Sym(4). We shall calculate 1C4 , the orbit of 1.

11 = 1 (1234) · 1 = 2 (13)(24) · 1 = 3 (1432) · 1 = 4

Clearly, the orbit of 1 is ∆, therefore C4 acts transitively on ∆. Evidently the only stabiliser

of any element in ∆ is the identity of C4, hence the action is semi-regular and, as it is also

transitive, we see that it is regular as well.

Next, consider C3 = 〈(123)〉 ≤ Sym(4) acting on ∆. A quick check will show the action

has a trivial kernel and has orbits {1, 2, 3} and {4}. We can verify Theorem 2.9 for both

orbits: 3 = 1× 3 and 3 = 3× 1.

Now we shall look at two actions of Sym(4) on ∆ The first one is the same action we have

used throughout this example. As C4 is a subgroup and the action of C4 is regular, it follows

that the action of Sym(4) is transitive. However, it is not semi-regular; consider the stabiliser

of the point 4, a simple calculation gives G4 = {1, (12), (13), (23), (123), (132)} ∼= Sym(3).

Again, we can verify Theorem 2.9 as 24 = 4× 6.

Recall that every permutation can be expressed as a finite product of transpositions. We

can then define the following homomorphism

Sgn : Sym(4)→ C2 by g 7→

{
1 if g is a product of an even number of transpositions;

(12) if g is a product of an odd number of transpositions.

11



This homomorphism can be turned into an action using Theorem 2.8. Define:

Sgn† : G×∆→ ∆ by Sgn†(g, δ) 7→ Sgn(g)δ

The orbits of this action are {1, 2}, {3} and {4}. We find that Ker(Sgn†) = G(∆) =

{1, (123), (132), (124), (134), (143), (142), (234), (243), (12)(34), (13)(24), (14)(23)} ∼= Alt(4) E

Sym(4).

Definition 2.10. [Gil16, p. 24] Multiply Transitive Group

Let, G be a group acting on a set ∆ = {1, . . . , n}, then G acts on ∆k by g(δ1, . . . , δk) =

(g(δ1), . . . , g(δk)). Define,

∆(k) = {(δ1, . . . , δk) : δi 6= δj ∀i, j = 1, . . . , k with i 6= j}

then if G acts transitively on ∆(k) we say that G is k-transitive and acts k-transitively on

∆. Moreover, if G acts regularly on ∆(k) then we say G is sharply k-transitive. If k ≥ 2 we

describe G as a multiply transitive group.

We remark that for k ≥ 2, a k-transitive group is (k− 1)-transitive; this can be observed

by considering the fact the tuple δ = (δ1, . . . , δk) must be sent to every other possible tuple in

∆(k). It follows that there exist elements in G that send δ to every (α1, . . . , αk−1, δk) ∈ ∆(k).

Example 6. Multiply Transitive Groups

Sym(n) acts n-transitively on a set of size n in the category Set. In the same category on

the same sized set, Alt(n) acts (n− 2)-transitively.

We will revisit the idea of multiply transitive groups when we construct the small Mathieu

groups in Chapter 6.

2.3 Groups Acting on Groups

2.3.1 Conjugacy Classes

So far, we have only looked at examples of groups acting on sets. We know groups can act

on many objects in different categories as demonstrated by Theorem 2.8. In this section we

will be considering groups acting on groups, specifically groups acting on themselves. First,

we consider two important actions of a group acting on itself.

Definition 2.11. [Gil16, p. 13] (Left) Regular Action

Let G be a group acting on itself in the category Set with following action; G×G→ G by
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(g, h) 7→ gh. We call this action the (left) regular action of G and it gives an embedding of

G into Sym(G).

Definition 2.12. [Gil16, p. 13] The Conjugation Action

Let G be a group acting on itself in the category Grp with the following action; G×G→ G

by (g, h) 7→ ghg−1. We call this action conjugation and it gives a homomorphism from G to

AutGrp(G).

The orbits of the conjugation action partition G. We call these partitions the conjugacy

classes of G. If g and h are in the same conjugacy class, then they are described as being

conjugate. The kernel of the conjugation homorphism is the centre of G, denoted Z(G).

The quotient G/Z(G) is called the inner automorphism group and is denoted Inn(G). Any

other automorphisms ofG are called outer automorphisms. The quotient group Aut(G)/Inn(G)

is called the outer automorphism group and is denoted Out(G).

This action can also be extended to the set of subgroups of G. We describe two subgroups

H and K as conjugate subgroups if there exists a g ∈ G such that gHg−1 = K. We note two

important instances of this. If G acts transitively on a set Ω, then the point stabilisers of G

are conjugate. Secondly, all Sylow p-subgroups of G are conjugate (for more on the Sylow

theorems, see Section 2.3.2).

Theorem 2.13. [Gil16, p. 14] Let G be a group and define φ : G → AutGrp(G) by g 7→ φg

where φg(h) = ghg−1 (this is the homomorphism corresponding to the conjugation action)

then

1. Im(φ) = Inn(G);

2. Ker(φ) = Z(G) where Z(G) is the centre of the group;

3. Inn(G) E Aut(G).

A proof of this theorem is given in most standard texts on group theory, for example

Rotman’s ‘An Introduction to the Theory of Groups’ [Rot95, p. 156].

Definition 2.14. Centraliser

Let G be a group, then the centraliser of an element g ∈ G is the set of elements that commute

with g. Let g ∈ G, then the centraliser of g in G is given by CG(g) = {h ∈ G : gh = hg} and

note that it forms a subgroup of G. This is exactly the stabiliser of g under the conjugacy

action. We can extend this to a subset S of G. Here, CG(S) = {g ∈ G : gs = sg, ∀s ∈ S}.

Definition 2.15. Normaliser

Let G be a group and H be a non empty subset of G, then the normaliser of H in G is

NG(H) = {g ∈ G : gH = Hg}. Note that CG(H) ≤ NG(H). This is exactly the stabiliser of

the set H under the conjugacy action.

13



Theorem 2.16. [Rot95, p. 156] Let G be a group with a subgroup H then the following hold:

1. CG(H) E NG(H);

2. The quotient group NG(H)/CG(H) embeds into Aut(G).

A proof of this theorem is also given in Rotman’s ‘An Introduction to the Theory of

Groups’ [Rot95, p. 156].

Example 7. Conjugacy Classes of Sym(4)

We shall calculate the orbits of the conjugacy action of Sym(4) on itself, first we shall observe

that 1Sym(4) = 1 giving us our trivial class. Now we shall calculate (12)Sym(4) (that is the

orbit of (12)):

1(12)1 = (12)

(13)(12)(13) = (23)

(14)(12)(14) = (24)

(23)(12)(23) = (13)

(243)(12)(234) = (14)

(24)(13)(12)(24)(13) = (34)

Any further conjugations of (12) give the same six permutations, hence the orbit of (12) is

{(12), (13), (14), (23), (24), (34)}. Note that Theorem 2.9 holds as 24 = 6× 4. Proceeding in

the same manner, we can calculate all of the remaining conjugacy classes (Table 2.1).

Elements Class Size
1 1

(12),(13),(14),(23),(24),(34) 6
(123),(132),(124),(142),(134),(143),(234),(243) 8

(12)(34),(13)(24),(14)(23) 3
(1234),(1432),(1423),(1324),(1243),(1342) 6

Total 24

Table 2.1: The conjugacy classes of Sym(4).

Notice that each class divides the order of the group, this is a consequence of The-

orem 2.9. Observe that the union of the classes containing the three cycles, the double

transpositions and the trivial class is actually Alt(4). As Sym(4) has trivial centre we can

see that Inn(Sym(4)) ∼= Sym(4).
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In fact, in Sym(n) the conjugacy classes are determined by cycle type; we will write these

as a partition of n. For example, the conjugacy classes of Sym(4) are, 14, 1221, 22, 1131, 41.

For the alternating groups we have the following theorem.

Theorem 2.17. The Splitting Criteria

Given an even conjugacy class of Sym(n), then either:

1. This class is equal to a single conjugacy class of Alt(n);

2. This class splits into two conjugacy classes of Alt(n).

The second case occurs if the partition of the class contains neither an odd number, nor a

repeated number.

We omit the proof of this theorem, however, a proof of it can be found in John Wilson’s

book ‘The Finite Simple Groups’ [Wil09].

2.3.2 The Sylow Theorems

The following set of standard results are collectively known as the Sylow Theorems. They

will be stated without proof; however several proofs are available and can be found in the

original article by Sylow [Syl72] or in ‘The early proofs of Sylow’s theorem’ by Waterhouse

[Wat80].

Definition 2.18. Sylow p-Subgroups

Let G be a group with order |G| = pkm where p is a prime and p does not divide m, then

a subgroup of order pk is termed a Sylow p-subgroup. The set of all Sylow p-subgroups for a

given prime p is denoted by Sylp(G).

Theorem 2.19. Let G be a group of order |G| then for every prime factor p with multiplicity

k of |G|, there exists a subgroup of G of order pk.

Theorem 2.20. Let G be a group of order |G| and let p be a prime that divides |G| then

for every H,K ∈ Sylp(G) there exists a g ∈ G such that H = gKg−1; that is any two Sylow

p-subgroups are conjugate.

Theorem 2.21. Let G be a group of order |G|, let p be a prime that divides |G|, let np be

the number of Sylow p-subgroups of G and let P ∈ Sylp(G); then the following hold:

1. np divides |G : P |;

2. np ≡ 1 (mod p);

3. np = |G : NG(P )|.
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2.3.3 Group Extensions

A key fact in group theory is that every group G can be constructed by joining together

simple groups. The study of finding every way to combine groups K and N is called the

extension problem. Without going into too much detail we will describe the two types of

extension, split and non split (for further information on group extensions the interested

reader is recommended Brown’s ‘Cohomology of Groups’ [Bro82]).

Definition 2.22. [Rot95, p. 40] Direct Product

Let H and K be groups and define G = H ×K where H ×K is the Cartesian product of H

and K. That is H ×K = {(h, k) : h ∈ H, k ∈ K}. Define a multiplication on H ×K by

(h1, k1)(h2, k2) = (h1h2, k1k2)

Then G is the direct product of H and K.

Example 8. Some useful direct product groups

The Klein-4 group V4 is isomorphic to C2 × C2 = C2
2 . Any n-dimensional vector space V

over a field F is isomorphic to the direct product of n copies of the additive group of F, that

is V ∼= (F+)n.

Definition 2.23. [Rot95, p. 167] Semi-direct Product

Let N and K be groups and define G = N ×K where N × K is the Cartesian product of

N and K. Let ϕ : K → Aut(N) by k 7→ ϕk be a group homomorphism. Let ϕk denote the

image of k in Aut(N) and define a group multiplication on N ×K by

(n1, k1)(n2, k2) = (n1ϕk1(n2), k1k2).

Then G is the semi-direct product of N and K with respect to ϕ; we denote this N oϕ K.

We shall make the following remarks without proof. Let G = N oϕ K then N E G,

G/N ∼= K and |G| = |N | × |K|. If ϕ is trivial then G ∼= N ×K. Finally, every semi-direct

product gives a short exact sequence that splits as follows.

{1} N G K {1} .

In fact every group that can be expressed as a short exact sequence that splits has a semi-

direct product structure.

Example 9. Some useful semi-direct product groups

Any direct product is a semi-direct product with a trivial action. The Symmetric group on

16



3 points, Sym(3) ∼= C3 o C2 where C2
∼= AutGrp(C3)). The Dihedral group on n points,

D2n
∼= Cn o C2.

If a group cannot be expressed as a semi-direct product, we describe the group as non-split

and denote this as N ·K. We still have a short exact sequence, but it does not split.

Example 10. The Quaternion Group

The Quaternion group Q8 is usually defined by the following relations:

〈i, j, k : i2 = j2 = k2 = ijk, (ijk)2 = 1〉.

Essentially, Q8 is generated by three distinct order 4 elements which all square to give the

same element. However, it can also be described as the non split extension C ·4C2 = (C ·2C2)·C2.

We will now calculate the conjugacy classes of Q8 (Table 2.2).

Name Elements Class Size
C1 1 1
C2 ijk 1
C4A i, i3 2
C4B j, j3 2
C4C k, k3 2

Table 2.2: The conjugacy classes of Q8.

2.4 Group Actions and Vector Spaces

Example 11. Groups Acting on Vector Spaces

Recall that the general linear group of a vector space V over a field F is the set of all invertible

linear transforms V → V . A ‘natural’ left action of GL(V ) on V as an object in VectF is to

simply apply the linear transform associated with an element g of GL(V ) to a column vector

v ∈ V ; that is: g · v.

Now, consider the following G-Set, (C3, V, ϕ) where V ∼= R3 and C3 = {1, (123), (132)}.
Let B = {e1, e2, e3} be a basis for V and define a left action ϕ : C3×V → V by ϕ : (g, ei) 7→
eg·i. Clearly the identity permutation sends ei to ei, now we just need to check (A2):

g(h(ei)) = g(eh·i) = egh·i = gh(ei).

Clearly, the action is linear, so we conclude that this is a well-defined action. Now, observe

that this action of C3 is cyclically permuting the basis vectors of V . In fact we can even

write down matrices which correspond to this action. Define φ : C3 → GL3(R) by:
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φ(1) =

1 0 0

0 1 0

0 0 1

 , φ((123)) =

0 0 1

1 0 0

0 1 0

 and φ((132)) =

0 1 0

0 0 1

1 0 0

.

What we have just calculated is a faithful action of C3 on V as an object in VectR.

Another immediate consequence of Theorem 2.8 is that when a group acts on a vector

space V as an object in VectF we immediately get a homomorphism into AutVectF(V ). If V

is finite dimensional over a field F then AutVectF(V ) ∼= GL(V ) ∼= GLn(F). The study of these

homomorphisms is called group representation theory. We will conclude this chapter with an

example demonstrating how groups can be constructed from representations.

Example 12. Affine Groups

Let V be an object in VectF; as V is an Abelian group, any group G which acts on a vector

space as an object in VectF can be used to construct a semi-direct product group V oη G.

Here, we could also act as an object in Grp and we would construct different groups. Acting

on an object in VectF is a stronger property than acting on an object in Grp, because an

action on an object in VectF must be F-linear as well a group automorphism.

If G = GL(V ) then the semi-direct product group we obtain is the affine general linear

group AGL(V ). If V is of dimension n over a field F then AGL(V ) is denoted AGLn(F).We

will now consider a specific example of this construction and investigate some groups which

will be useful later on.

Let V = F2
3 so AutVectF3

(V ) = GL2(3). Our semi direct product group is AGL2(3).

We shall examine the subgroups of GL2(3), then restrict the action on V as an object in

VectF to these subgroups, to obtain subgroups of AGL2(3). Note that |GL2(3)| = 48 and

|AGL2(3)| = 9× 42 = 432.

• First, recall the special linear group SLn(F), the subgroup of GLn(F) where every

element has determinant equal to 1. Here, we are interested in SL2(3) < GL2(3) which

has order 24. Now, restricting our action to just SL2(3) acting on V as an object in

VectF we obtain the affine special linear group ASL2(3).

• Let θ =

[
0 2

1 0

]
and λ =

[
1 1

1 2

]
. It is easy to see that both of these are order 4 elements

in SL2(3), hence, 〈θ〉 ∼= 〈λ〉 ∼= C4. Moreover, θ2 = λ2 = (θλ)2. Now, recall the definition

of the Quaternion group Q8 = 〈i, j, k : i2 = j2 = k2 = ijk, (ijk)2 = 1〉. Setting i = θ,

j = λ and k = θλ we can see that 〈θ, λ〉 ∼= Q8. We obtain a new subgroup F2
3 oη Q8 of

AGL2(3). We will later find out this group is the Mathieu group M9.
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• Take γ =

[
1 1

0 1

]
, an element of order 3 in SL2(3). Restricting the action η to 〈γ〉 we

obtain F2
3 oη C3, which is isomorphic to the Heisenberg group over F3 denoted He(3).

Note that He(3) is usually defined to be the set of unitriangular 3× 3 matrices over F3.

Finally we note that SL2(3) = 〈θ, λ, γ〉 and taking any element ω ∈ GL2(3) with determinant

not equal to 1 then GL2(3) = 〈θ, λ, δ, ω〉. Figure 2.1 shows a lattice diagram of the groups

we have just constructed.

AGL2(3)

ASL2(3) GL2(3)

He(3) C2
3 oQ8 SL2(3)

Q8

C2
3 〈θ〉 ∼= C4 〈λ〉 ∼= C4

〈γ〉 ∼= C3 C2

{1}

92

3
8

9
2

3

9
8

9
3

8 2
2

9

2
2

3
2

Figure 2.1: Subgroup lattice of AGL2(3), the numbers represent index.

We note that the four groups at the top left of the diagram are of Affine type. Each of

them contain a subgroup C2
3 which is isomorphic to the vector space F2

3. In fact the group

C2
3 is also of Affine type. It is technically being acted on trivially by the trivial group; that

is C2
3
∼= C2

3 oη {1}.
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Chapter 3

Group Representation Theory

Throughout this chapter, we will develop the notion of group representation theory ; that is,

the study of groups acting on vector spaces. Our treatment will be fairly standard and will

follow ideas developed in [Bur93, Isa94, JL01]. The key questions to keep in mind are, if G

is a group acting on a vector space V as an object in VectF, then what subspaces of V are

left invariant under the action of G? And how many different ways can a group be written

as a set of (complex) matrices?

3.1 An Introduction

Definition 3.1. Representation of a Group.

A representation of a group G on a vector space V over a field F is a triple (G, V, φ), consisting

of G a group, V a vector space and a group homomorphism φ : G→ GL(V ); that is ∀g, h ∈ G
we have φ(gh) = φ(g)φ(h). Equivalently, we can think of a representation as an action of G

on V as an object in VectF.

We should note that φ does not need to be a monomorphism, but if it is, the representation

is described as being faithful ; this is exactly the same as the corresponding action of G on V

as an object in VectF being faithful.

Example 13. Trivial and Regular Representations

The following representations can be constructed for any finite group G:

(i) The trivial representation is simply the trivial homomorphism ι : G → GL(V ) by

ι : g 7→ 1V .

(ii) We can construct the (left) regular representation ofG by identifying the group elements

with a basis of V and taking any g ∈ G. We can then define a left action of G
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on the basis of V by ρ(g, x) 7→ gx, ∀x ∈ G. That is if G = {g1, . . . , gn} and we

identify each gi with an ei from a basis B = {e1, . . . , en} for V , we obtain a new basis

BG = {eg1 , . . . , egn}. Then h ∈ G acts on BG by hegi = eh(gi). The action can be

extended linearly, that is, h ∈ G acts by h(
∑n

i=1 fiegi) =
∑n

i=1 fih(egi) where fi ∈ F.

We should note that the (left) regular representation includes the (left) regular action of

G (Section 2.3) because when G acts on V , it acts via the basis identified with G. Moreover,

the action on the basis is exactly equivalent to the (left) regular action.

Example 14. Regular Representation of Sym(3)

We have already seen an example of the regular representation of C3 in Example 11. Now

we will look at a slightly bigger group. Instead of writing out the representation of every

element in Sym(3), we will just look at what happens to the generating set 〈(12), (123)〉.
Firstly, we will write down our basis BSym(3) = {e1, e(12), e(13), e(23), e(123), e(132)} for V ∼=

C6. Now we need to see where our generators send the other elements in the group under

the left regular action; fortunately this is as simple as reading off the Cayley table1[Cay89].

· 1 (12) (13) (23) (123) (132)

(12) (12) 1 (132) (123) (23) (13)

(123) (123) (13) (23) (12) (132) 1

Define φ : Sym(3)→ GL(V ), now we can write down where φ maps our generators:

φ((12)) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


and φ((123)) =



0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0


.

Example 15. Permutation Representations

Consider a permutation group G that acts naturally on a set of size n as an object in Set.

An incredibly useful representation of G can be constructed using the natural action of G.

We do this by assigning each of the n points to a basis vector; we can then map every g ∈ G
to a matrix which permutes the basis vectors in the same way that G acts on the set.

This is best illustrated with an example. Take G = Sym(3) and a set ∆ = {1, 2, 3}. We

shall let G act on ∆ in the ‘natural’ way (apply the permutation to an element of the set).

Now, define B∆ = {e1, e2, e3}; we can adapt the action by applying the permutation to the

number assigned to each basis vector, for example: (123) · e1 = e2. We can now calculate

generators for the permutation representation of Sym(3). Define φ : Sym(3)→ GL3(C) by:

1Recall that the Cayley table multiplication order is row·column.
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φ((12)) =

0 1 0

1 0 0

0 0 1

 and φ((123)) =

0 0 1

1 0 0

0 1 0

.

Now we know what a representation is and how to calculate it, the obvious question we

should be asking is: How many representations are there for a given group? Before we can

answer this, we should first have a way to tell if two representations are equivalent.

Definition 3.2. Equivalent Representations

Given a group G and two vector spaces V and W over F with corresponding representations

ρ and φ, then ρ and φ are said to be equivalent if there exists an isomorphism τ : V → W ,

such that ∀g ∈ G, we have τρ(g)τ−1 = φ(g). If there is such a τ we write ρ ∼ φ. This can

be summarised by the following commutative diagram:

V V

W W

ρ(g)

τ τ

φ(g)

Another equivalent interpretation is that we are checking whether the matrices corresponding

to each representation are simultaneously similar.

Example 16. Equivalent and Inequivalent Representations

1. Define two representations of {1, g} on V = C2. That is, define ρ, φ : C2 → GL2(C) by:

ρ(1) = φ(1) =

[
1 0

0 1

]
, ρ(g) = 1

2

[
−1 1

3 1

]
and φ(g) =

[
0 1

1 0

]
.

It is easy to check that ρ and φ are well defined group homomorphisms. Now let

τ : V → V be a vector space isomorphism with τ = 1
6

[
2 −1

0 3

]
. A quick calculation

gives τ−1 =

[
3 1

0 2

]
. Now observe:

τ−1φ(g)τ =
1

6

[
2 −1

0 3

][
0 1

1 0

][
3 1

0 2

]
=

1

2

[
−1 1

3 1

]
= ρ(g).

As we can conjugate φ by τ to obtain ρ, we see that ρ ∼ φ.

2. We shall now consider another two representations of C2, this time on V ∼= (F5)3.

Define θ, ψ : C2 → GL3(5) by:
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θ(1) = ψ(1) =

1 0 0

0 1 0

0 0 1

, θ(g) =

4 0 0

0 4 0

0 0 4

 and ψ(g) =

4 0 0

0 1 0

0 0 1

.

Can we find a τ such that τθτ−1 = ψ? What we are really asking here is, is θ(g) similar

to ψ(g)? Checking determinants, we see that det(θ(g)) = det(ψ(g)) = 4 (as we are

working over F5). We should also check their eigenvalues. A quick calculation gives the

eigenvalues as 4, 4, 4 for θ(g) and 4, 1, 1 for ψ(g). Hence, the matrices are not similar

and there does not exist such a τ . Therefore θ 6∼ ψ.

3.2 Rings, Modules and the Group Algebra

Clearly, the regular representation is easy to calculate for small groups. However, if we

want to look at some of the more interesting phenomena that occur within group theory, we

will need to look at bigger groups. Unfortunately writing down matrices with hundreds of

rows and columns is certainly not practical. We are clearly going to need a more technical

approach to analyse larger groups.

The following section follows the treatment given in chapter 1 of Isaacs’s book ‘Character

Theory of Finite Groups’ [Isa94] and chapter 2 of Martin Burrow’s book ‘Representation

Theory of Finite Groups’ [Bur93].

Definition 3.3. [Isa94, p. 1] F-Algebra

Let A be a vector space over F with the structure of a ring with identity. Suppose that for

all f ∈ F and a, b ∈ A that:

(fa)b = f(ab) = a(fb). (3.1)

Then A is an F-Algebra.

Definition 3.4. [Isa94, p. 3] F-Algebra Homomorphism

Let A and B be F-Algebras, then ∀x, y ∈ A an F-Algebra homomorphism Φ : A → B
satisfies:

(1) Φ(xy) = Φ(x)Φ(y) and moreover Φ(1A) = 1B;

(2) Φ is an F-linear transformation.

An F-Algebra Isomorphism is an F-Algebra Homomorphism that is also invertible.

We can now define the category AlgF where the objects are F-Algebras and the arrows

are F-Algebra homomorphisms.
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Example 17. F-Algebras

A simple example of an F-Algebra is M2(R); here our vector space is R4 but we shall write

elements as 2 × 2 matrices. The ring structure is given by considering standard matrix

multiplication as the ring’s multiplication. As scalars commute with matrices, verifying (3.1)

is straightforward:

(fa)b =

(
f

[
a1 a2

a3 a4

])[
b1 b2

b3 b4

]
=

([
a1 a2

a3 a4

]
f

)[
b1 b2

b3 b4

]
=

[
a1 a2

a3 a4

](
f

[
b1 b2

b3 b4

])

= a(fb) =

[
a1 a2

a3 a4

][
fb1 fb2

fb3 fb4

]
=

[
fa1b1 + fa2b3 fa1b2 + fa2b4

fa3b1 + fa4b3 fa3b2 + fa4b4

]
= f(ab).

Another example is the Group Algebra denoted F[G]; this will be of primary use to us. To

construct the group algebra for a group G with order n over a field F, we must first start with

an n dimensional vector space over F. We should assign a basis B to our vector space such

that the elements of the basis are labeled after the group elements, that is B = {g1, . . . , gn}.
Now each element a of F[G] can be expressed as a formal sum:

a =
n∑
i=1

figi where fi ∈ F. (3.2)

We define multiplication on F[G] as the multiplication of the basis vectors with respect to

the group operation and extend linearly. For a, b ∈ A we have

a · b =
n∑
i=1

aigi

n∑
j=1

bjgj =
n∑

i,j=1

aibjgigj where ai, bi ∈ F.

We should note that (3.2) is actually a linear combination of basis vectors. Moreover, the

identification with G means we have an instant embedding of G into F[G].

We can now use the structure of the group algebra to study group representations. In

fact, we shall take a look at the action of the group algebra F[G] on a vector space V in VectF.

We can define a (left) action ψ of a group algebra on a vector space V ∈ VectF analogously

to that of a group; it is a function of the form:

Ψ : F[G]× V → V, Ψ (a,v) 7→ a · v.

We require the action satisfies five properties; the first two are exactly the properties of a

group action (Definition 2.5) and the other three are as follows:
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• ∀a, b ∈ A, v ∈ V we have (a+ b)v = a · v + b · v;

• ∀a ∈ A, v,w ∈ V we have a · (v + w) = a · v + a ·w;

• ∀a ∈ A, v ∈ V, f ∈ F we have a · (fv) = f(a · v) = (fa) · v.

In much the same way that an action of a group on V as an object in VectF gave a

homomorphism from G to GL(V ), the action of F[G] on V as an object in VectF gives a

homomorphism from F[G] to End(V ) = HomVectF [V, V ], the endomorphism algebra of V .

Recall that End(V ) ∼= Mn(F) if V is finite dimensional with dimension n.

Lemma 3.5. Every action of F[G] on V as an object in VectF can be restricted to an action

of G on V as an object in VectF. Conversely, every action of G on V as an object in VectF

can be extended to an action of F[G] on V as an object in VectF.

Proof. If we start with an action Ψ of F[G] on V as an object in VectF, then by definition

the restriction ψ is a group action of G on V as an object in VectF. Conversely, if we start

with an action ψ of G on V as an object in VectF, then construct our group algebra F[G] in

the standard way (3.2); we can extend the action to Ψ as follows:

Ψ

(
n∑
i=1

figi,v

)
7→

n∑
i=1

figi(v).

Now observe that Ψ(1,v) = ψ(1,v) = v and for all a, b ∈ A we have:

n∑
i=1

aigi

(
n∑
j=1

bjgj · v

)
=

(
n∑
i=1

aigi

n∑
j=1

bjgj

)
· v =

n∑
i,j=1

aibjgigj(v).

For the first additive property we have:(
n∑
i=1

aigi +
n∑
i=1

bigi

)
·v =

(
n∑
i=1

(ai + bi)gi

)
·v =

n∑
i=1

(ai+bi)gi(v) =
n∑
i=1

aigi(v)+
n∑
i=1

bigi(v).

For the second:

n∑
i=1

aigi(v+w) =
n∑
i=1

aigi·(v+w) =

(
n∑
i=1

aigi

)
·v+

(
n∑
i=1

aigi

)
·w =

n∑
i=1

aigi(v)+
n∑
i=1

aigi(w).

Scalar multiplication is immediate:

n∑
i=1

aigi · (fv) = f

(
n∑
i=1

aigi · v

)
= f

(
n∑
i=1

aigi(v)

)
=

n∑
i=1

faigi(v) =
n∑
i=1

faigi · v.
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Definition 3.6. [Isa94, p. 3] (Left) A-Module

Let A be an F-Algebra and M be a finite dimensional vector space over F. For every a ∈ A
and m ∈ M , define ma to be some element of M . Now, assume for all a, b ∈ A, m,n ∈ M
and f ∈ F that:

(M1) a(m + n) = am + an.

(M2) (a+ b)m = am + bm.

(M3) (ab)m = a(bm).

(M4) a(fm) = f(am) = (fa)m.

(M5) 1m = m.

Then M is a (Left) A-Module.

From this point on, all A-Modules will be (left) A-Modules and we will drop the prefix

(left). The definition of an A-Module is another way of looking at the action of A on an

object in VectF. In fact, if M is an A-Module, then A acts on M as an object in VectF. From

this we can see that the Modules of a group algebra F[G] correspond to the representations

of the group G.

Example 18. Examples of A-Modules

• If A is any F-Algebra then A is an A-Module under left multiplication. We will call

this the regular A-Module and denote it Â.

• Take F as an F-Algebra, then an F-Module is exactly a vector space over F; in fact,

vector spaces are exactly modules over fields.

Definition 3.7. [Isa94, p. 3] A-Module Homomorphism

Let M and N be A-Modules and define a linear transformation Φ : M → N . Then Φ is

an A-Module homomorphism if for all m ∈ M and a ∈ A we have: Φ(am) = aΦ(m). An

A-Module homomorphism is an A-Module isomorphism if it is invertible.

We make the following remark in regards to A-Modules. The modules over an F-Algebra

A form a category ModA; we will denote the Hom-space of any two modules M and N in

this category by HomA[M,N ].

Lemma 3.8. If two F[G]-Modules M and N are isomorphic, then their corresponding rep-

resentations are equivalent.
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Proof. Let M ∼= N be two F[G]-Modules, and let µ and η be their corresponding repre-

sentations. As M ∼= N , we have an F[G]-Module isomorphism T : M → N , recall that

T (am) = aT (m) for all a ∈ F[G] and m ∈ M . Now let BM and BN be basis for M and N

respectively; by definition, T is linear, so T has an invertible matrix representation τ with

respect to BM and BN . It immediately follows that µ(a)τ = τη(a) for all a ∈ F[G] and

therefore µ ∼ η.

We remark that the converse of the previous lemma is also true. We have discussed

several ideas throughout this chapter; we will summarise these by stating that the following

ideas are equivalent:

1. Representations of a group G.

2. Group actions of G on a vector space V in VectF.

3. Actions of the group algebra F[G] on a vector space V in VectF.

4. F[G]-modules.

The notion of equivalence here is formal; each class of objects with the arrows between them

forms a category. These categories are all equivalent to ModF[G].

3.3 Submodules

Definition 3.9. [Isa94, p. 3] Submodules

Given anA-module M , then a submodule N is a subspace of M such that ∀a ∈ A and ∀n ∈ N
we have an ∈ N . A nonzero A-Module M is termed irreducible if its only submodules are {0}
and M . Moreover, the representation corresponding to an A-module is termed irreducible if

and only if the corresponding A-module is irreducible.

Definition 3.10. [JL01, p. 66] Direct Sum

LetM andN be F[G]-modules with respective basisB1 = {m1, . . . ,mk} andB2 = {n1, . . . ,nl}.
We define the direct sum of M and N , denoted M ⊕ N , as the F[G]-module with basis

B = {m1, . . . ,mk,n1, . . .nl}. If g ∈ G then,

[g]B =

 [g]B1 0

0 [g]B2

 .
Theorem 3.11. [JL01, p. 61] The Fundamental Theorem of Module Homomorphisms

Let M and N be F[G]-submodules and Φ : M → N an F[G]-homomorphism. Then:
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1. Ker(Φ) is a submodule of M ;

2. Im(Φ) is a submodule of N ;

3. Im(Φ) ∼= M/Ker(Φ).

This theorem can be summarised by a commutative diagram. Here, Ξ is the canonical

projection from M to M/Ker(Φ) and Ψ is an isomorphism between M/Ker(Φ) and Im(Φ).

M N

M/Ker(Φ)

Ξ

Φ

Ψ

A proof of this result can be found in James and Liebeck’s ‘Representations and Characters

of Groups’ [JL01, p. 61].

Lemma 3.12. [JL01, p. 67] Let M be an F[G]-module and suppose that M = M1⊕· · ·⊕Mk,

so for m ∈M we have m = m1+· · ·+mk with mi ∈Mi. Define πi : M →M by πi(m) = mi;

then πi is an F[G]-homomorphism whose image is isomorphic to Mi.

Proof. First, we shall verify the properties of an F[G]-homomorphism. Clearly, πi is an

F-linear transformation. Now, for m ∈M and g ∈ G we have:

πi(gm) = πi(gm1 + · · ·+ gmk) = gmi = gπi(m).

Hence, πi is an F[G]-homomorphism. The fact that Im(πi) = Mi is immediate from the

definition of πi.

Example 19. Submodules of the Regular Representation of Sym(3)

In Example 14, we calculated the regular representation of Sym(3) on V ∼= C6 with basis

BSym(3) = {e1, e(12), e(13), e(23), e(123), e(132)}; from another point of view, V is the regular

C[Sym(3)]-Module.

If we let x = e1 + e(12) + e(13) + e(23) + e(123) + e(132), then it is easy to check that

the subspace generated by x, denoted 〈x〉, is invariant under C[Sym(3)]. Moreover, this

submodule is actually the trivial representation of Sym(3). Note that 〈x〉 is of dimension 1,

making it irreducible.

Recall the Sgn homomorphism of Sym(n) we used in Example 5. We can use this to

build a representation of Sym(3). As Sgn sent even permutations to 1 and odd permutations

to −1, let Sgn = e1 − e(12) − e(13) − e(23) + e(123) + e(132), then the submodule 〈Sgn〉 is one

dimensional and as such is irreducible.

It is easy to see that 〈x〉 and 〈Sgn〉 are not equivalent. The eigenvalue for every group

element is 1 under the trivial representation, whereas for the Sgn representation the odd
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permutations have an eigenvalue of −1. Clearly, we cannot define a linear transform to map

one to the other. To calculate any more submodules we will need some more machinery.

Definition 3.13. Completely Reducible Modules

We describe M as completely reducible if it can be expressed as the direct sum of irre-

ducible modules; that is M =
⊕

iMi where Mi is an irreducible submodule of M . Moreover,

completely reducible implies there exist short exact sequences that split2 (Definition 2.4) as

follows:

0 Mi M M
Mi

0
f1 f2

If every A-module is completely reducible then we describe A as semi-simple. We should note

that irreducible modules are by definition, completely reducible.

We will soon see that we can break down F̂[G] into a set of unique irreducible mod-

ules. Correspondingly, we will get a set of irreducible representations that are unique up to

equivalence.

Lemma 3.14. [Sch04] Schur’s Lemma

If M and N are irreducible A-Modules, then every nonzero element of HomA[M,N ] has an

inverse in HomA[N,M ]

Proof. Let Φ ∈ HomA[M,N ] then Ker(Φ) is a submodule of M and Im(Φ) is a submodule

of N . The Lemma is now immediate.

Corollary 3.15. [JL01, p. 78] Let M and N be irreducible A-Modules and let Φ : M → N

be an A-Module homomorphism, then either M ∼= N or Φ is the trivial homomorphism.

Corollary 3.16. [JL01, p. 78] Let M be irreducible and Φ : M →M an isomorphism. Then

Φ is equal to scalar multiplication by some f ∈ F.

3.4 Maschke’s Theorem

Theorem 3.17. Maschke’s Theorem

Let G be a finite group of order n and F a field with characteristic p, then every F[G]-Module

is completely reducible if and only if p = 0 or p - n.

There are a number of proofs for Maschke’s Theorem, however, many of these require

studying the Jacobson radical of a Ring and Nilpotent ideals. Studying these would increase

2As modules are constructed over Abelian groups, a quotient module is constructed in exactly the same
way as a quotient group with the additional condition that it has the structure of a module.
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the length of this project significantly and so the interested reader is referred to Chapter

2 of Burrow’s book ‘Representation Theory of Finite Groups’ [Bur93]. If the reader has

some knowledge of the German language, then they are also referred to Maschke’s original

articles[Mas98][Mas99].

We will now restrict to fields of characteristic zero, specifically, the field of complex

numbers (that is F = C). By restricting to C, Maschke’s Theorem holds and then every

group algebra will be semi-simple. We now have a framework for calculating and breaking

down group representations (up to equivalence).

Lemma 3.18. [Isa94, p. 7] Every irreducible C[G]-module M is isomorphic to a submodule

of the regular module Ĉ[G].

Proof. Let M be an irreducible C[G]-module and choose m ∈M such that m 6= 0. Define a

projection Φ : Ĉ[G]→M by Φ(a) = am. As Φ(ab) = abm = aΦ(b), then Φ is a C[G]-module

homomorphism. Now m ∈ Im(Φ) and M is irreducible, so by Schur’s Lemma (Lemma 3.14),

Im(Φ) = M . Hence, M ∼= Ĉ[G]
Ker(Φ)

and by Maschke’s Theorem Ĉ[G] ∼= M ⊕Ker(Φ).

The immediate consequence of Lemma 3.18 is that we can now hope to explicitly write

down every representation of group G over C up to equivalence.

Example 20. Revisiting the Submodules of the Regular Representation of Sym(3)

Recall that we calculated two irreducible submodules of Sym(3), 〈x〉 and 〈Sgn〉. Let H =

〈x〉⊕ 〈Sgn〉 and define π : V → H. If there are any more irreducibles they will be contained

within Ker(π), however, at this point we should summarise the situation with a diagram of

containments (the numbers represent codimension):

V

〈x〉 Ker(π) 〈sgn〉

5
2

5

Let ω = e
2iπ
3 and define:

k1 = e1 + ωe(123) + ω2e(132)

k2 = e1 + ω2e(123) + ωe(132)

k3 = e(12) + ωe(23) + ω2e(13)

k4 = e(12) + ω2e(23) + ωe(13)

We claim that Ker(π) = 〈k1,k2,k3,k4〉. To see this, note that the ki are linearly inde-

pendent and that the set is fixed under the action of Sym(3). Furthermore, each of the ki is
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clearly in Ker(π); thus, the fact that dim(Ker(π)) = 4 yields the claim.

The action of Sym(3) on Ker(π) has two orbits {k2,k4} and {k1,k3}. Therefore K1 =

〈k1,k3〉 and K2 = 〈k2,k4〉 are 2-dimensional submodules of C[Sym(3)]. Define the function:

Ψ: K1 → K2 by k1 7→ k2, k3 7→ k4.

Then, Ψ is a C[Sym(3)]-module isomorphism.

Theorem 3.19. There are only finitely many non isomorphic irreducible C[G]-Modules Mi

and the sum of their dimensions is less than or equal to the order of G.

Proof. Let Ĉ[G] ∼=
⊕

iMi where Mi is irreducible and let M be any irreducible C[G]-module.

There exists a projection Φ : Ĉ[G] → Mi that does not map M to zero (see proof of

Lemma 3.18). Now, restrict Φ to Φ : M → Mi. There must be a choice for i for which

this is non zero. By Schur’s Lemma (Lemma 3.14) we have a module isomorphism.

Now, M1, . . . ,Mk contains all irreducible C[G]-modules. Observe that dim(M1) + · · · +
dim(Mk) = dim(Ĉ[G]) = |G|. However, some of these C[G]-modules may be isomorphic, so

the sum of their dimensions is less than or equal to |G|.

Lemma 3.20. [JL01, p. 97] For any C[G]-Module M , dim
(

HomC[G]

[
Ĉ[G],M

])
= dim(M)

Proof. (Sketch). Let dim(M) = n and let {e1, . . . , en} be a basis for M . Define Φi :

Ĉ[G] by a 7→ aei, then Φi ∈ HomC[G]

[
Ĉ[G],M

]
. Moreover, {Φ1, . . .Φn} is a basis for

HomC[G]

[
Ĉ[G],M

]
.

Theorem 3.21. [JL01, p. 101] Let M be the set of unique irreducible C[G]-Modules, then:

|G| =
∑
M∈M

dim(M)2.

Proof. Now, |G| = dim
(
Ĉ[G]

)
=
∑

dim(M) where M is any irreducible C[G]-Module. By

Lemma 3.20 each M ∈ M must occur in Ĉ[G], dim(M) times; the result is now immediate.

Corollary 3.22. Let, M be the set of unique irreducible C[G]-Modules and let ki = dim(Mi)

then

C[G] =
⊕
Mi∈M

kiMi.

In summary, when studying representations of a group G over C, to classify every rep-

resentation of G, it is enough to calculate all of the unique irreducible C[G]-Modules. The

irreducible C[G]-Modules correspond exactly to the irreducible representations of G over C;
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the sum of the squares of the dimensions of the unique irreducible C[G]-modules equals the

order of the group. Finally, we can reconstruct any possible representation of G by direct

summing combinations of the irreducible modules.
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Chapter 4

Character Theory

In Chapter 3 we studied several different concepts: Actions on vector spaces, representations

and C[G]-modules. We showed that each of these are equivalent ways of studying the same

idea. We are now going to develop a method known as character theory, which will provide

techniques to study and characterise the representations of a finite group G.

The motivation for such a method comes from the fact that representations of larger

groups become particularly difficult to calculate and work with. However, with character

theory we will be able to completely tabulate the information regarding the characters of

a group. We call this table, the group character table and not only does it completely

characterise the representations of G, but it also gives a large amount of information about

the group itself. Just to reiterate, all representations will be over C.

4.1 The Characters of a Group

Definition 4.1. [JL01, p. 117] Trace of a Matrix

The trace of an n×n matrix A is defined as the sum of the elements on the diagonal, that is

tr(A) =
n∑
i=1

ai,i.

Lemma 4.2. [JL01, p. 118] Let A and B be two n× n matrices then tr(AB) = tr(BA).

Proof. tr(AB) =
∑n

i=1

∑n
j=1 ai,jbj,i =

∑n
i=1

∑n
j=1 bj,iai,j = tr(BA).

Definition 4.3. [JL01, p. 119] Character of a Representation

Let φ be a representation of a group G. The character χφ of G afforded by φ is the function
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χφ(g) = tr(φ(g)). This can be summarised by the following commutative diagram:

G GLn(C)

C
χ

φ

tr

If the representation is irreducible then we say that the character is irreducible. We define

χφ(1) as the degree or dimension of χφ. Degree 1 characters are called linear.

Example 21. Some Characters of C2

In Example 16 we wrote down some representations of C2:

ρ(1) = φ(1) =

[
1 0

0 1

]
, ρ(g) = 1

2

[
−1 1

3 1

]
and φ(g) =

[
0 1

1 0

]
.

Let χρ be the character of ρ and χφ be the character of φ. Then:

χρ(1) = χφ(1) = tr(ρ(1)) = 2, χρ(g) = tr(ρ(g)) = 0 and χφ(g) = tr(φ(g)) = 0.

Lemma 4.4. [JL01, p. 123] Let χ be the character of a C[G]-Module M afforded by a repre-

sentation φ then χ(1) = dim(M).

Proof. Let dim(M) = d then φ(1) = Id the d×d identity matrix, hence χ(1) = tr(Id) = d.

Lemma 4.5. [JL01, p. 119] Similar representations of a group G afford equal characters and

characters are constant on the conjugacy classes of G.

Proof. Let φ and ψ be equivalent representations of G, that is there exists a linear transform

τ such that τ−1φ(g)τ = ψ(g). Now fix a basis so we can write τ as a matrix then tr(ψ(g)) =

tr(τ−1φ(g)τ) = tr(ττ−1φ(g)) = tr(φ(g)). Let g, h ∈ G then hgh−1 is in the conjugacy class

of g, now tr(φ(hgh−1)) = tr(φ(h)φ(g)φ(h−1)) = tr(φ(h)φ(h−1)φ(g)) = tr(φ(g)).

There are some important remarks to make, firstly characters characterize representations;

by this we mean that much of the information about a representation can be deduced from

its character and we will find it is far easier to calculate characters than representations.

Secondly to specify a character of group, we only need to specify its value on one element in

each conjugacy class, we will usually refer to this element as a representative element.

Let φ : G→ GL(V ) and ψ : G→ GL(W ) be representations of G and define:

θ : G→ GL(V ⊕W ) by θ(g) =

[
φ(g) 0

0 ψ(g)

]
.

Hence, tr(θ(g)) = tr(φ(g)) + tr(ψ(g)). Evidently the set of all characters of a group G are

closed under addition.
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4.2 Counting Representations

Definition 4.6. [Bur93, p. 64] The Center of a Group Algebra

The Center of a Group Algebra is given by:

Z(C[G]) = {z ∈ C[G] : az = za ∀a ∈ C[G]}.

This is simply the set of elements which commute with every element in C[G]. We should

note that the Center of a Group Algebra forms a subalgebra of C[G].

Lemma 4.7. [Isa94, p. 9] Given any z ∈ Z(C[G]) and any irreducible C[G]-Module M , define

the map Φz : m 7→ z ·m; then Φz is an M-endomorphism and Φz(m) = cm for some c ∈ C.

Proof. For every a ∈ C[G] we have azm = zam hence Φz is a C[G]-Module homomorphism

with equal source and target. By Schur’s Lemma (Lemma 3.14) Φ is an isomorphism and it

follows that Φz corresponds to scalar multiplication (Corollary 3.16).

Lemma 4.8. [Isa94, p. 9] The number of unique irreducible C[G]-Modules is exactly equal to

dim(Z(C[G])).

Proof. We decompose C[G] as
⊕

i kiMi where Mi is irreducible and ki = dim(Mi). Now let

1 =
∑

i ei where ei ∈ kiMi and let z ∈ Z(C[G]); then z = z1 =
∑

i z(ei) =
∑

i fiei where

fi ∈ C. We see that Z(C[G]) is a subset of the span of the set of ei. Any element of the form∑
i fiei is in Z(C[G]), so we see that the ei form a basis for Z(C[G]). There is only one ei

for each unique irreducible module, hence, dim(Z(C[G])) is equal to the number of unique

irreducible C[G]-Modules.

Lemma 4.9. [Isa94, p. 15] Let Cl(1), . . . , Cl(d) be the conjugacy classes of G and let Ki =∑
g∈Cl(i) g then {K1, . . . , Kd} forms a basis for Z(C[G]).

Proof. Let z ∈ Z(C[G]) such that z =
∑n

i=1 figi then ∀h ∈ G we have:

z = hzh−1 =
n∑
i=1

figi =
n∑
j=1

fjhgjh
−1.

Equating coefficients we see fi = fj and gi = hgih
−1, from this we see that conjugate elements

have the same coefficient. Now, define Ki =
∑

g∈Cl(i) g then the Ki are linearly independent.

It follows that, z =
∑d

i=1 fiKi, thus, the Ki span Z(C[G]).

Theorem 4.10. [Bur93, p. 65] The number of distinct irreducible representations of a finite
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group G is equal to the number of conjugacy classes of G and moreover:

|G| =
∑

χi∈Irr(G)

χi(1)2. (4.1)

Where Irr(G) is the set of distinct irreducible characters of G.

Proof. Apply Lemma 4.8 and Lemma 4.9. Moreover, as χi(1) = dim(Mi) then by Theo-

rem 3.21 we arrive at (4.1).

Corollary 4.11. [Bur93, p. 67] Let G be a finite abelian group then every irreducible C[G]-

module is of dimension 1.

Proof. As every element in G is in a singleton conjugacy class, it follows that there are exactly

|G| distinct irreducible representations. Moreover,
∑|G|

i=1 χi(1)2 = |G| hence χi(1) = 1 for

every i in 1 ≤ i ≤ |G|.

Theorem 4.12. [JL01, p. 123] Let G be a finite group and M a C[G]-module. Let g ∈ G
and let g have order n, then there is a basis B of M such that the [g]B is diagonal. Moreover,

the diagonal entries are nth roots of unity.

Proof. Let H = 〈g〉, the cyclic subgroup of G generated by g. As M is also a C[H]-module

the result is an immediate consequence of Corollary 4.11.

4.3 Examples of Characters

In this section we will detail several important characters for various representations and

some quick ways to calculate them. This is not an exhaustive collection, however, many of

these will be useful later on.

4.3.1 Trivial, Regular and Conjugate Characters

For any group G we have the trivial representation ι : G → C by g 7→ 1. We denote the

trivial character by χ0 and χ0(g) = 1 for every g ∈ G. The regular character is the character

afforded by the regular module Ĉ[G] of a group G, denoted χG.

Lemma 4.13. [JL01, p. 127] For 1 ∈ G we have χG(1) = |G| and for all g ∈ G such that

g 6= 1 then χG(g) = 0.

Proof. Let BG be a basis of Ĉ[G] and let φ be the corresponding representation. If φ(g) = A

where A is a |G| × |G| matrix, then the element aij = 0; unless ggi = gij, in which case
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aij = 1. Since ggi = gi if and only if g = 1, we have χG(g) = 0 for g 6= 1, it follows that

χG(1) = |G|.

Lemma 4.14. [JL01, p. 119] χG =
∑k

i=1 χi(1)χi where the χi are the irreducible characters

of G.

Proof. As the regular module of G breaks down into k irreducible representations φ1, . . . , φk

and each representation φi occurs χi(1) times, the result follows immediately.

Example 22. Trivial and Regular Characters of Sym(3)

Let G = Sym(3) and define ι : G → C by ι : g 7→ 1; then the trivial character is given by

χ0(g) = tr(1) = 1 for every element in G.

Recall Example 14 where we calculated the regular representation of Sym(3), we shall list

the identity and the generators (which also happen to be representative elements for their

respective classes); then calculate the regular character for these elements.

φ(1) = I6, φ((12)) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


and φ((123)) =



0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0


.

We have χG(1) = tr(φ(1)) = tr(I6) = 6 = |G|, χG((12)) = tr(φ((12)) = 0 and χG((123)) =

tr(φ((123)) = 0, verifying Lemma 4.13 in this case.

Given any character χ of G we can obtain a new character χ̄ by taking the complex

conjugate of χ; of course if χ : G → R then χ = χ̄. We call this character the conjugate

character.

Example 23. The Conjugate Character of C3

Let C3 = 〈g : g3 = 1〉 and define a representation φ : C3 → C by φ : gk 7→ ωk where ω = e
2iπ
3 .

Now, let χφ be the character afforded by φ, we see that χφ(gk) = ωk. The conjugate character

of χφ is given by χφ(gk) = ωk = ω3−k.

Theorem 4.15. [JL01, p. 123] Let G be a finite group, let g ∈ G and let g have order n. Let

χ be the character afforded by a C[G]-module M then χ(g) is the sum of nth roots of unity

and χ(g−1) = χ(g).

Proof. By Theorem 4.12 there is a basis B of M such that [g]B is diagonal and each element

on the diagonal is an nth root of unity. Therefore, χ(g) is a sum of nth roots of unity.

Consider [g−1]B. Here every root of unity ωi on the diagonal will be replaced by ω−1. Hence,

χ(g−1) =
∑n

i=1 ω
−1
i . As every nth root of unity satisfies ω−1 = ω the result follows.
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Corollary 4.16. [JL01, p. 123] If g is conjugate to g−1 then χ(g) ∈ R.

Proof. If g is conjugate to g−1 then χ(g) = χ(g−1) = χ(g). Hence, χ(g) is a real number.

4.3.2 Permutation Characters

We explored the permutation representation in Example 15, we will now study the associated

character. Let G be a permutation group that acts on a set ∆ = {1, . . . , n} and let B∆ =

{e1, . . . , en} be a basis; then g ∈ G acts on B∆ by applying the action to the index of the

basis vector g is acting on. We extend this action linearly to the whole vector space. Denote

the corresponding representation P̂ .

Let the matrix corresponding to g with respect to B∆ be denoted [g]B∆
. As [g]B∆

is

a permutation matrix then tr ([g]B∆
) = Fix(g) where Fix(g) = {i ∈ B∆ : gi = i}; that is

Fix(g) is the elements of B∆ that are fixed by g. This representation has a character χ∆ and

χ∆(g) = Fix(g).

Under any permutation representation the subspace 〈1〉, where 1 is the column vector

with 1 in every entry, is invariant. By Maschke’s Theorem (Theorem 3.17) we can then

see that P̂ = 〈1〉 ⊕ P for some C[G]-module P . The subspace P has a character χP and

χP (g) = Fix(g) − 1. Finally, if G = Sym(n) we call this character the standard character.

Later on we will see that if G is 2-transitive then χP is irreducible.

Example 24. The Standard Character of Sym(3)

Recall in Example 15 we calculated the permutation representation of Sym(3). We will state

the representation again here for convenience; define φ : Sym(3)→ GL2(C) by:

φ(1) =

1 0 0

0 1 0

0 0 1

, φ((12)) =

0 1 0

1 0 0

0 0 1

 and φ((123)) =

0 1 0

0 0 1

1 0 0

.

Let χP be the standard character; then we can see that the identity fixes all three points

so χP (1) = 3 − 1 = 2 and χP (1) = tr(φ(1)) − 1 = 2. Similarly χP ((12)) = 1 − 1 = 0

and χP ((12)) = tr(φ((12))) − 1 = 0, finally χP ((123)) = 0 − 1 = −1 and χP ((123)) =

tr(φ((123)))− 1 = −1.

For any group with both even and odd permutations we can define a character which

corresponds to the Sgn representation of the group. We call this character the Sgn character

and denote the character χSgn. If g is an even permutation, then χSgn(g) = 1; if g is an odd

permutation, then χSgn(g) = −1.
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4.3.3 Lifted Characters

Let G be a group with a normal subgroup N and let ν : G→ G/N be the quotient map. Let

χ be a character of G/N then the composite map χ(ν(g)) is a character of G, we call this

character the lift of χ. The Sgn character of the symmetric group is a specific example of

this, as it is the character lifted from Sym(n)/Alt(n) ∼= C2. In general, if G has an index 2

subgroup, we can lift the Sgn character.

Definition 4.17. [JL01, p. 124] Kernel of a Character

Let χ be a character of a group G, then Ker(χ) = {g ∈ G : χ(g) = χ(1)}.

Lemma 4.18. [JL01, p. 169] Irreducible characters of G/N correspond to irreducible char-

acters of G whose kernel contains N .

Proof. Let ν : G→ G/N be the canonical homomorphism and let χ be a character of G/N .

The composite map χν shows that all characters of G/N are characters of G. Moreover,

χ(ν(N)) = χ(1) and for n ∈ N we have:

χ(ν(n)) = χ(nN) = χ(N) = χ(1).

Therefore, N ≤ Ker(χ). Now we need to check that irreducible characters remain irreducible

once they have been lifted to G. Let φ be the representation that affords the lift of χ and

let ψ be the representation that affords χ; let M be a subspace of Cn and let m ∈M . Then

φ(g)m ∈M if and only if ψ(gN)m ∈M . Hence, M is a C[G]-submodule if and only if M is

a C [G/N ]-submodule. It follows that ψ is irreducible if and only if φ is irreducible.

Lemma 4.19. [JL01, p. 124] Let χ be a character afforded by φ, a representation of a group

G and let g ∈ G. Then |χ(g)| = χ(1) if and only if φ(g) = cIk where c ∈ C.

Proof. Suppose that |χ(g)| = χ(1), then by Theorem 4.12 we have basis B for Ck such that

[g]B is a diagonal matrix and the non zero entries ωi are nth roots of unity. We see that:

|χ(g)| =

∣∣∣∣∣
k∑
i=1

ωi

∣∣∣∣∣ = χ(1) = n.

Since |ωi| = 1 for every i it follows that ωi = ωj for every i and j. Thus, [g]B = ω1Ik.

Conversely, let φ(g) = cIk where c ∈ C. Then c is an nth root of unity and χ(g) = kc so

|χ(g)| = |kc| = k = χ(1).

Lemma 4.20. [JL01, p. 124] Let φ be a representation of G with character χ then Ker(φ) =

Ker(χ).
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Proof. If g ∈ Ker(φ) then φ(g) = In and χ(g) = tr(In) = χ(1), hence, Ker(φ) ≤ Ker(χ). To

show the reverse inclusion suppose that χ(g) = χ(1), then φ(g) = cIn for some c ∈ . Hence,

χ(g) = cχ(1), therefore c = 1 and φ(g) = In and g ∈ Ker(φ).

Theorem 4.21. [JL01, p. 124] Let χ be a character afforded by a representation φ of a group

G then Ker(χ) E G.

Proof. By Lemma 4.20 we have Ker(χ) = Ker(φ); as representations of a group are exactly

group homomorphisms into GL(V ) for some vector space V , it follows that Ker(χ) E G.

Theorem 4.22. [JL01, p. 172] A group G is simple if and only if χ(g) 6= χ(1) for every

non-trivial irreducible character χ and every non identity element g.

Proof. Suppose for some non trivial irreducible character χ and for some g ∈ G such that

g 6= 1 we have χ(g) = χ(1); then g ∈ Ker(χ). Let φ be the representation affording χ, then,

by Lemma 4.20, we have Ker(χ) = Ker(φ). As φ is irreducible Ker(φ) 6= G, it follows that

Ker(χ) 6= G. Hence, Ker(χ) is a non trivial normal subgroup of G and G is not simple.

Conversely, suppose for contradiction G is not simple but Ker(χ) = {1} for every irre-

ducible character χ of G. As G is not simple, there exists a non trivial normal subgroup N

of G. As N E G there is a non trivial irreducible character χ of G lifted from G/N . But

then by Lemma 4.18, N ≤ Ker(χ), a contradiction. Therefore, N must be trivial and G is

simple.

4.4 The Character Table

The Character Table of a group G is a table whose columns correspond to the conjugacy

classes of the group and whose rows correspond to the irreducible representations. The

entries of the table are the characters evaluated for each conjugacy class.

Example 25. The Character Tables of Cyclic Groups.

We shall begin by calculating a representation of any cyclic group of order n. Let Cn =

〈g : gn = 1〉 and define φn : Cn → C by φn : gk 7→ e
2iπk
n . Let χφn be the character afforded by

φn then χφn(g) = φn(g). We shall calculate the table for C2 first.

Now, C2 is of order 2 and has two conjugacy classes, hence we are looking for two, 1-

dimensional irreducible representations. The representations are obviously φ2 and the trivial

representation ι. We can now write down the character table of C2 (Table 4.1).
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C2 1 g
χ0 1 1
χφ2 1 −1

Table 4.1: The character table of C2.

Next, we will calculate the character table of C3, here we have 3 conjugacy classes, so

we are looking for three, one dimensional irreducible representations. Here, our first two

representations are φ3 and the trivial representation. However, χφ3(g) takes a complex value,

we can get the third irreducible character by taking complex conjugates of χφ3 . Let ω = e
2iπ
3 ,

then we can write down the complete character table (Table 4.2).

C3 1 g g2

χ0 1 1 1
χφ3 1 ω ω2

χφ3 1 ω2 ω

Table 4.2: The character table of C3, where ω = e
2iπ
3 .

We can construct every non trivial irreducible character of a cyclic group Cn by defining

group homomorphisms ψa : gk 7→ e
2iπ(k+a)

n where a ∈ Z and 0 ≤ a ≤ n.

Example 26. The Character Table of Sym(3)

Recall that we have found three irreducible representations of Sym(3): the trivial represen-

tation, the Sgn representation and a 2-dimensional representation. A quick calculation will

show that Sym(3) has three conjugacy classes {1}, {(12), (13), (23)} and {(123), (132)} and

so we know our three irreducible representations are all of them.

Let 1, (12) and (123) be representative elements for their respective conjugacy classes.

We can now calculate our character table. Firstly consider the trivial representation ι which

yields the trivial character χ0, we know that χ0(g) = 1 for every g ∈ Sym(3). Next, we will

calculate the Sgn character χSgn:

χSgn(1) = 1, χSgn((12)) = −1 and χSgn((123)) = 1.

Finally, we need to calculate the 2-dimensional character χ3, this is actually the standard

character of Sym(3) so we just need to calculate fix(g)− 1 for each conjugacy class,

χ3(1) = 2, χ3((12)) = 0 and χ3((123)) = −1.

We can now write down the complete character table (Table 4.3).
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Sym(3) 1 (12) (123)
χ0 1 1 1
χSgn 1 −1 1
χ2 2 0 −1

Table 4.3: The character table of Sym(3).

Example 27. The Character Table of C3 × C3

In this example we will calculate the character table of the direct product of two cyclic

groups of order 3. First, recall that C3 × C3 = {(a, b) : a, b ∈ C3}, in fact this is exactly a

two dimensional vector space over F3. Before we calculate the characters we will look at the

subgroups; we can find four copies of C3 within C3×C3, there are the two obvious subgroups

generated by (a, 1) and (1, b), however, there are two more, generated by (a, b) and (a2, b).

We shall summarize this with a diagram of containments:

C3 × C3

〈(a, 1)〉 〈(a, b)〉 〈(a2, b)〉 〈(1, b)〉

{1}

We can use these subgroups along with our knowledge of C3 to calculate all of the charac-

ters of C3×C3. As our group is abelian of order 9 it has 9 conjugacy classes and 9 irreducible

representations. We can write every representation down explicitly, let ω = e
2iπ
3 and ι be the

trivial representation of C3 × C3. Using the aforementioned subgroup calculations we can

now define functions to lift characters from each of the subgroups. Define ψi : C3 × C3 → C
by:

ψ1((ak, bl)) 7→ ωk, ψ2((ak, bl)) 7→ ωl, ψ3((ak, bl)) 7→ ωk+l and ψ4((ak, bl)) 7→ ωk−l.

The remaining four one dimensional representations are given by taking the complex

conjugates of the ψi. Let χi be the character afforded by ψi; we can now write down the

completed character table (Table 4.4).
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C3 × C3 1 (a, 1) (a2, 1) (1, b) (1, b2) (a, b) (a2, b2) (a2, b) (a, b2)
χ0 1 1 1 1 1 1 1 1 1
χ1 1 ω ω2 1 1 ω ω2 ω2 ω
χ1 1 ω2 ω 1 1 ω2 ω ω ω2

χ2 1 1 1 ω ω2 ω ω2 ω ω2

χ2 1 1 1 ω2 ω ω2 ω ω2 ω
χ3 1 ω ω2 ω ω2 ω2 ω 1 1
χ3 1 ω2 ω ω2 ω ω ω2 1 1
χ4 1 ω ω2 ω ω2 1 1 ω ω2

χ4 1 ω2 ω ω2 ω 1 1 ω2 ω

Table 4.4: The character table of C3 × C3, where ω = e
2iπ
3 .

4.5 Schur Orthogonality Relations

Definition 4.23. [JL01, p. 143] Constituent Character

Let χ1, . . . , χk be the irreducible characters of a group G. Let χ be any character of G then

χ =
∑k

i=1 ciχi. Wherever ci 6= 0 we say that χi is a constituent of χ.

Definition 4.24. [JL01, p. 134] (Complex) Inner Product Space

Let V be a complex vector space and let 〈·, ·〉 : V × V → C be a function that satisfies the

following for every u,v,w ∈ V and ∀c ∈ C:

1. 〈u,v〉 = 〈v,u〉;

2. 〈cu,v〉 = c〈u,v〉;

3. 〈u + w,v〉 = 〈u,v〉+ 〈w,v〉;

4. 〈u,u〉 ≥ 0 with equality if and only if u = 0.

Lemma 4.25. [JL01, p. 134] Let V be the space of functions from a group G to C and let

φ, ψ ∈ V . Define 〈·, ·〉 by:

〈φ, ψ〉 =
1

|G|
∑
g∈G

φ(g)ψ(g). (4.2)

Then V with 〈·, ·〉 is an inner product space.

Proof. This is immediate from the definition of an inner product space.

Lemma 4.26. [JL01, p. 135] Let φ and ψ be characters of a finite group G then 〈φ, ψ〉 =

〈ψ, φ〉.
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Proof. Since φ(g−1) = φ(g) and {g−1 : g ∈ G} = G we obtain

〈φ, ψ〉 =
∑
g∈G

φ(g)ψ(g) =
∑
g∈G

φ(g)ψ(g−1) =
∑
g∈G

φ(g−1)ψ(g) =
∑
g∈G

φ(g)ψ(g) = 〈ψ, φ〉.

Lemma 4.27. [JL01, p. 138] Let C[G] = M1⊕M2 (so M1 and M2 are sums of non isomorphic

submodules). Let χ be the character afforded by M1 and let 1 = e1 + e2, then

e1 =
1

|G|
∑
g∈G

χ(g−1)g.

Proof. Let x ∈ G, then the function Φ : C[G]→ C[G] by Φ : a 7→ x−1e1a is an endomorphism

of C[G]. For m1 ∈ M1 and m2 ∈ M2, because all C[G]-homomorphisms from M1 to M2 are

trivial, we see that Φ(m1) = x−1e1m1 = x−1e1 and Φ(m2) = x−1e2m2 = 0. It follows that

tr(Φ) = χ(x−1) where χ is the character afforded by M1.

As e1 ∈ C[G] we see that e1 =
∑

g∈G cgg, where cg ∈ C. Recall that the regular character

χG(g) takes the value |G| if g = 1 and 0 otherwise. Hence, Φ : a 7→ x−1
∑

g∈G cgga and we

see that tr(Φ) = cx|G|. It follows that cx = χ(x−1)/|G|, hence, e1 = 1
|G|
∑

g∈G χ(g−1)g.

Lemma 4.28. [JL01, p. 139] Let M1 be the same as in Lemma 4.27 and let χ be the character

afforded by M1 then 〈χ, χ〉 = χ(1).

Proof. The coefficient of 1 ∈ G in e2
1 is 1

|G|2
∑

g∈G χ(g−1)χ(g) = 1
|G|〈χ, χ〉, this can be seen by

applying the previous lemma to the definition of multiplication in the group algebra. Now,

let m1 ∈ M1 and m2 ∈ M2 and observe that m1 = m11 = m1(e1 + e2) = m1e1, taking

m1 = e1 gives e1 = e2
1. Now, the coefficient of 1 ∈ G in e1 is 1

|G|χ(1); equating these gives

〈χ, χ〉 = χ(1).

Theorem 4.29. [JL01, p. 140] Let χi and χj be irreducible characters of a group G, afforded

by non isomorphic C[G]-modules Mi and Mj; then, 〈χi, χj〉 = δij, where δij is Dirac’s Delta

Function given by δij =

{
0 if i 6= j;

1 if i = j.

Proof. Let k = dim(Mi) and define M to be the direct sum of the k isomorphic copies of Mi

in C[G]. Let every other C[G]-submodule be contained in N , then C[G] = M ⊕ N . Note

that M and N intersect trivially, it follows that the character afforded by M is kχi. By

Lemma 4.28 we obtain 〈kχi, kχi〉 = kχi(1). As χi(1) = k we see that 〈χi, χi〉 = 1.

Let dim(Mj) = l and let X be the direct sum of the k isomorphic copies of Mi and

the l isomorphic copies of Mj. Let every other C[G]-submodule be contained in Y , then
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C[G] = X ⊕ Y . Here X and Y intersect trivially, so the character of X is kχi(1) + lχj(1).

By Lemma 4.28 we see that

kχi(1) + lχj(1) = 〈kχi + lχj, kχi + lχj〉

= k2〈χi, χi〉+ l2〈χj, χj〉+ kl(〈χi, χj〉+ 〈χj, χi〉)

= k2 + l2 + kl(〈χi, χj〉+ 〈χj, χi〉).

As χi(1) = k and χj(1) = l, we see that 〈χi, χj〉 + 〈χj, χi〉 = 0 and as 〈χi, χj〉 = 〈χj, χi〉 we

obtain 〈χi, χj〉 = 0.

Theorem 4.30. [JL01, p. 143] Let χ1, . . . , χk be the irreducible characters of a finite group

G. Let χ be any character of G then χ =
∑k

i=1 ciχi where 0 ≤ ci ∈ Z. Moreover, ci = 〈χ, χi〉
and 〈χ, χ〉 =

∑k
i=1 c

2
i .

Proof. The statement χ =
∑k

i=1 ciχi where the ci are non negative integers, follows immedi-

ately from Maschke’s Theorem. Now, let there be ci copies of χi in χ; then as 〈χi, χj〉 = δij

it follows that 〈χ, χi〉 = ci. The last statement is immediate.

Theorem 4.31. [JL01, p. 143] Let G be a finite group and let M be a C[G]-module. Let χ

be the character afforded by M ; then M is irreducible if and only if 〈χ, χ〉 = 1.

Proof. If M is irreducible then by Theorem 4.29 we have 〈χ, χ〉 = 1. Let χ = c1χ1 +· · ·+ckχk
where ci is a non negative integer. Now, assume 〈χ, χ〉 = 1 then 〈χ, χ〉 = c2

1 + · · · + c2
k =

which implies that one of the di = 1 and the rest equal 0, and so χ is irreducible.

Definition 4.32. [JL01, p. 152] Class Function

We define a class function on G, as a function φ : G → C such that Im(φ) is constant for

each conjugacy class. Characters are an example of class functions.

Lemma 4.33. [JL01, p. 153] Every class function of G can be expressed as a linear combi-

nation of the irreducible characters of G.

Proof. Let G have k conjugacy classes and observe that by Theorem 4.10, G has k irreducible

characters χ1, . . . , χk. The set of class functions of G forms a vector space over C of dimension

k (the number of classes). Now, assume that c1χ1 + . . .+ckχk = 0 for some complex numbers

ci. For every i we have 0 = 〈c1χ1 + . . .+ ckχk, χi〉 = ci and so the irreducible characters are

linearly independent. Thus, the set of irreducible characters form a basis for the space of

class functions.

Theorem 4.34. [JL01, p. 154] Let g ∈ G, then g is conjugate to g−1 if and only if χ(g) ∈ R
for all characters χ of G.
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Proof. If g is conjugate to g−1, then χ(g) = χ(g−1) by Corollary 4.16. Conversely, suppose

χ(g) ∈ R for all characters χ of G, then we have χ(g) = χ(g−1). It follows that for every

class function φ on G, we have φ(g) = φ(g−1). Now, define a class function ζ that takes the

value 1 on the conjugacy class of g and 0 elsewhere. Observe that ζ(g) = ζ(g−1), thus g is

conjugate to g−1.

Theorem 4.35. [JL01, p. 161] Schur’s Orthogonality Relations

Let χ1, . . . , χk be the irreducible characters of G and let g1, . . . , gk be representative elements

of the conjugacy classes of G, then for every r, s ∈ {1, . . . , k} we have:

k∑
i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs; (4.3)

k∑
i=1

χi(gr)χi(gs) = δrs|CG(gr)|. (4.4)

Proof. Let G have k conjugacy classes and let gGi be the conjugacy class of G containing gi

then ∑
g∈G

χs(g)χr(g) =
k∑
i=1

|gGi |χs(gi)χr(gi).

As G is the union of its k conjugacy classes then by Theorem 2.9 we have |gGi | = |G|/|CG(gi)|.
Now, observe that

〈χs, χr〉 =
1

|G|
∑
g∈G

χr(g)χs(g)

=
1

|G|

k∑
i=1

∑
g∈gGi

χr(g)χs(g)

=
k∑
i=1

|gGi |
|G|

χr(g)χs(g)

=
k∑
i=1

χr(g)χs(g)

|CG(gi)|
.

Applying Theorem 4.29 we arrive at (4.3).

Now, let φs be a class function of G that satisfies φs(gr) = δrs, say φs =
∑k

i=1 ciχi then

ci = 〈φs, χi〉. Now, φs(g) = 1 when g is conjugate to gs and φs(g) = 0 otherwise. There are
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|gGs | = |G|/|CG(gs)| elements conjugate to gs, hence,

ci =
1

|G|
∑
g∈gGs

φs(g)χi(g) =
χi(gs)

|CG(gs)|
.

Finally,

δrs = φs(gr) =
k∑
i=1

ciχi(gr) =
k∑
i=1

χi(gr)χi(gs)

|CG(gs)|
,

multiplying both sides by |CG(gs)| gives (4.4).

Lemma 4.36. [JL01, p. 340] Let G be a group acting on a finite set Ω, let χ be the character

afforded by the permutation representation and let χ0 be the trivial character. Let Orb(Ω) be

the set of orbits of Ω then we have:

〈χ, χ0〉 =
1

|G|
∑
g∈G

|Fix(g)| = |Orb(Ω)|.

Proof. Let Λ = {(g, ω) : g ∈ G, ω ∈ Ω gω = ω}. It is immediate that |Λ| =
∑

g∈G |Fix(g)|.
By considering the stabilisers of points in Ω we also see that |Λ| =

∑
ω∈Ω |Gω|. Now, recall

that for ω ∈ Ω we have |G| = |ωG||Gω|. Let G have k orbits on Ω then

|Λ| =
∑
ω∈Ω

|Gω| =
k∑
i=1

|ωGi ||Gωi | = k|G| = |Orb(Ω)||G|.

Observe that 〈χ, χ0〉 = 1
|G|
∑

g∈G |Fix(g)|, the result follows.

We remark that a finite group G acts 2-transitively on a set Ω if |Orb(Ω×Ω)| = 2. These

two orbits are exactly, the set of unique pairs Ω(2) and the set {(ω, ω) : ω ∈ Ω}.

Theorem 4.37. [JL01, p. 342] If G acts 2-transitively on a finite set Ω, then the character

given by χ(g) = |Fix(g)| − 1 is irreducible.

Proof. Let the action of G on Ω have character χΩ. Consider the action of G on Ω × Ω.

Observe that,

〈χΩ, χΩ〉 =
1

|G|
∑
g∈G

|Fix(g)||Fix(g)| = |Orb(Ω× Ω)|.

As G is 2-transitive we have 〈χΩ, χΩ〉 = |Orb(Ω×Ω)| = 2. Finally, by Lemma 4.36, 〈χΩ, χ0〉 =

1. The result follows.

In Example 12 we explored a representation of Q8 over F3. In the same example we also
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investigated the group He(3). We will now calculate the complex character tables of both

groups.

Example 28. The Character Table of the Quarternion Group Q8

Recall that the Quarternion group Q8 has the following presentation,

〈−1, i, j, k : − 12 = 1, i2 = j2 = k2 = ijk = −1〉.

Here each of the i, j and k generate a subgroup of order 4. As |Q8| = 8 each of the order 4

subgroups are index 2 and therefore normal; the quotient groups formed are all isomorphic

to C2. We can lift a character from each C2, in each case the kernel will be exactly 〈i〉, 〈j〉
or 〈k〉.

Recall that Q8 has five conjugacy classes, we have just calculated three linear characters.

A fourth character is simply the trivial character, that means that the last character must

have dimension 2 as 22 = 8− 4. Consider the character table so far.

Q8 1 −1 i j k

χ0 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 1 1 −1 1 −1

χ3 1 1 −1 −1 1

χ4 2

We can now use Equation 4.4 to calculate the remaining row. Let g1 = 1 and g2 = −1, as

g1 6= −1 the right hand side of Equation 4.4 is equal to 0. Let χ4(−1) = x then,

4∑
i=0

χ(1)χ(−1) = 0

1× 1 + 1× 1 + 1× 1 + 1× 1 + 2x = 0

x = −2

Similar arguments give χ4(i) = χ4(j) = χ4(k) = 0. Recall the conjugacy class labels from

Table 2.2. The full character table for Q8 is given in Table 4.5.
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Q8 C1 C2 C4A C4B C4C
χ0 1 1 1 1 1
χ1 1 1 1 −1 −1
χ2 1 1 −1 1 −1
χ3 1 1 −1 −1 1
χ4 2 −2 0 0 0

Table 4.5: The character table of Q8.

Example 29. The Character Table of He(3)

The Heisenberg group over a field F is isomorphic to the unitriangular matrices over F. That

is,

He(3) =


1 x z

0 1 y

0 0 1

 : a, b, c ∈ F3

 .

Let G = He(3), it is easy to see that |G| = 27 as there are three choices for each of x, y and

z. Moreover, elements where both x and y equal 0 are in the centre of the group Z(G); there

are 3 such elements, each in their own conjugacy class and we will index them by z.

The remaining conjugacy classes can be found by direct calculation and the elements are

listed in Table 4.6. We will index each of these classes by (x, y) and note that the centraliser

in each case has order 9. This gives us the 11 conjugacy classes of He(3).
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Class Centraliser Elements

1 27

1 0 0
0 1 0
0 0 1


2 27

1 0 1
0 1 0
0 0 1


3 27

1 0 2
0 1 0
0 0 1


(0, 1) 9

1 0 0
0 1 1
0 0 1

 1 0 1
0 1 1
0 0 1

 1 0 2
0 1 1
0 0 1


(0, 2) 9

1 0 0
0 1 2
0 0 1

 1 0 1
0 1 2
0 0 1

 1 0 2
0 1 2
0 0 1


(1, 0) 9

1 1 0
0 1 0
0 0 1

 1 1 1
0 1 0
0 0 1

 1 1 2
0 1 0
0 0 1


(1, 1) 9

1 1 0
0 1 1
0 0 1

 1 1 1
0 1 1
0 0 1

 1 1 2
0 1 1
0 0 1


(1, 2) 9

1 1 0
0 1 2
0 0 1

 1 1 1
0 1 2
0 0 1

 1 1 2
0 1 2
0 0 1


(2, 0) 9

1 2 0
0 1 0
0 0 1

 1 2 1
0 1 0
0 0 1

 1 2 2
0 1 0
0 0 1


(2, 1) 9

1 2 0
0 1 1
0 0 1

 1 2 1
0 1 1
0 0 1

 1 2 2
0 1 1
0 0 1


(2, 2) 9

1 2 0
0 1 2
0 0 1

 1 2 1
0 1 2
0 0 1

 1 2 2
0 1 2
0 0 1


Table 4.6: The conjugacy classes of He(3).

As Z(G) E G we can lift characters from G/Z(G) ∼= C2
3 . To prove this is an isomorphism,

50



first note that each coset is indexed by (x, y). Now define:

ν : G→ C3
2 by ν :

1 x z

0 1 y

0 0 1

 7→ (ax, by).

Observe that for every g1, g2 ∈ G we have:

ν(g1g2) = ν


1 x1 z1

0 1 y1

0 0 1


1 x2 z2

0 1 y2

0 0 1


 = ν


1 x1 + x2 z1 + x1y2 + z2

0 1 y+y2

0 0 1




= (ax1+x2 , by1+y2) = (ax1 , by1)(ax2 , by2) = ν(g1)ν(g2).

Hence, ν is a group homomorphism.

We can now lift the 9 linear characters from C2
3 . As Ker(ν) = Z(G), the central elements

will take character values of 1 for the lifted characters. We know that |G| = 27, so we can

deduce that the two other characters have dimension 3, we will call these χ5 and χ6.

We can use (4.4) on column (x, y) to calculate χ5 and χ6 for the classes indexed by (x, y).

Let αx,y = χ5((x, y)) and βx,y = χ6((x, y)), then we see that αx,yαx,y + βx,yβx,y = 0 which

implies that |αx,y|2 + |βx,y|2 = 0, hence, αx,y = βx,y = 0.

He(3) 0 1 2 (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 2) (2, 1) (1, 2)

χ0 1 1 1 1 1 1 1 1 1 1 1

χ1 1 1 1 ω ω2 1 1 ω ω2 ω2 ω

χ1 1 1 1 ω2 ω 1 1 ω2 ω ω ω2

χ2 1 1 1 1 1 ω ω2 ω ω2 ω ω2

χ2 1 1 1 1 1 ω2 ω ω2 ω ω2 ω

χ3 1 1 1 ω ω2 ω ω2 ω2 ω 1 1

χ3 1 1 1 ω2 ω ω2 ω ω ω2 1 1

χ4 1 1 1 ω ω2 ω ω2 1 1 ω ω2

χ4 1 1 1 ω2 ω ω2 ω 1 1 ω2 ω

χ5 3 r1 r2 0 0 0 0 0 0 0 0

χ6 3 s1 s2 0 0 0 0 0 0 0 0

Let χ5(1) = r1, χ5(2) = r2, χ6(1) = s1 and χ6(2) = s2. Now, the classes indexed by 1 and 2

are inverse pairs, that is for g ∈ 1 we have g−1 ∈ 2. By Theorem 4.15 we see that r2 = r1

and χ6 = χ5. Hence, si = ri.

51



Using Equation 4.4 on columns 0 and 1 we obtain the equation r1 + r1 = −3 Using

Equation 4.3 on row χ5 and χ6 = χ5 we obtain the following equation.

0 =
9

27
+
r2

1

27
+
r1

27
+

02

9
+ · · ·+ 02

9

⇒ −9 = r2
1 + r1

2.

Solving the equations for r1, we obtain r1 = −3±3
√

3i
2

. We are free to choose which root to

set as r1, so let r1 be the positive root; then r1 is the negative root. Table 4.7 shows the

completed character table of He(3).

He(3) 0 1 2 (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 2) (2, 1) (1, 2)
χ0 1 1 1 1 1 1 1 1 1 1 1
χ1 1 1 1 ω ω2 1 1 ω ω2 ω2 ω
χ1 1 1 1 ω2 ω 1 1 ω2 ω ω ω2

χ2 1 1 1 1 1 ω ω2 ω ω2 ω ω2

χ2 1 1 1 1 1 ω2 ω ω2 ω ω2 ω
χ3 1 1 1 ω ω2 ω ω2 ω2 ω 1 1
χ3 1 1 1 ω2 ω ω2 ω ω ω2 1 1
χ4 1 1 1 ω ω2 ω ω2 1 1 ω ω2

χ4 1 1 1 ω2 ω ω2 ω 1 1 ω2 ω
χ5 3 α α 0 0 0 0 0 0 0 0
χ6 3 α α 0 0 0 0 0 0 0 0

Table 4.7: The character table of He(3), where ω = e
2iπ
3 and α = 1

2
(−3 + 3

√
−3).
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Chapter 5

Characters, Subgroups and Tensor

Products

In the previous chapter, we described several methods of obtaining characters of a finite

group. For example, lifting characters showed the relationship between a group G and its

quotient groups. We will now develop relationships between a group G and its overgroups

and subgroups. We will also look at a method of creating new characters from old via tensor

products; this will give us all of the tools needed to construct the character tables of the

small Mathieu groups.

5.1 Tensor Products of characters

Definition 5.1. Module Tensor Product

Let G be a finite group and let M and N be C[G]-modules with basis {m1, . . . ,mk} and

{n1, . . . ,nl} respectively. We define the tensor product of M and N to be M ⊗ N , the kl

dimensional C[G]-module with basis given by the set of symbols {mi ⊗ nj : 1 ≤ i ≤ m, 1 ≤
j ≤ n}. We define that for every g ∈ G:

g(mi ⊗ nj) = gmi ⊗ gnj.

Let fi, ci ∈ C, m ∈M , n ∈ N with m =
∑k

i=1 fimi and n =
∑l

j=1 cjnj then

m⊗ n =
∑
i,j

ficj(mi ⊗ nj).

Theorem 5.2. [JL01, p. 192] Let G be a finite group and let M and N be C[G]-modules

affording characters χφ and χψ, denote the character of M ⊗ N by χφψ. Then χφψ(g) =

53



χφ(g)χψ(g).

Proof. Let g ∈ G. By Theorem 4.12 we can pick a basis {m1, . . . ,mk} and {n1, . . . ,nl} for

M and N respectively such that gmi = cimi and gnj = kjnj where ci, kj ∈ C. It follows

that χφ(g) =
∑k

i=1 ci and χψ(g) =
∑l

j=1 fj. Observe that g(mi ⊗ nj) = cifj(mi ⊗ nj). As

the mi ⊗ nj form a basis for M ⊗ N , it follows that the character χφψ(g) =
∑

i,j cifj =

χφ(g)χψ(g).

We make the remark that for a character χ of a finite group G we define χχ = χ2 and χ0

to be the trivial character. The next Theorem will require the use of a Vandermonde matrix.

A matrix X is termed a Vandermonde matrix when Xij = xj−1
i and each xi is a distinct

complex number. Matrices of this form are invertible [HJ94].

Theorem 5.3. [JL01, p. 195] Let χ be a character afforded by a faithful representation of a

group G. Assume χ(g) takes r distinct values over every element g ∈ G; then every irreducible

character of G is a constituent of one of the powers χ0, . . . , χr−1.

Proof. Let x1, . . . , xr be the r values taken by χ and define Xi = {g ∈ G : χ(g) = xi}. Let

x1 = χ(1) then as χ is faithful, X1 = Ker(χ) = {1}. Let φ be an irreducible character of G

and let yi =
∑

g∈Xi φ(g); then for every j in 1 ≤ j ≤ r − 1 we have

〈χj, φ〉 =
1

|G|
∑
g∈G

(χ(g))j φ(g) =
1

.
|G|

r∑
i=1

(xji )yi (5.1)

Let X be the r × r matrix with entries Xij = xj−1
i ; then X is a Vandermonde matrix

and X−1 exists. Now, assume for contradiction that φ is not a constituent of any of the χj,

then (5.1) must equal 0. Now, as X is invertible every this means that every yi = 0, but

y1 = φ(1) 6= 0 and the result follows.

The previous theorem gives us a method of potentially finding the irreducible characters

of group G given a faithful character χ. The problem is that we do not have a method of

breaking apart χ2. The following theorems will develop such a method.

Definition 5.4. [JL01, p. 196] Symmetric and Antisymmetric Modules

Let G be a finite group and M be a C[G]-module and define T : M ⊗ M → M ⊗ M by

T : mi⊗mj = mj⊗mi extended linearly. We define the symmetric submodule of M ⊗M as:

S(M ⊗M) = {m ∈M ⊗M : T (m) = m}.
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We define the antisymmetric submodule of M ⊗M as:

A(M ⊗M) = {m ∈M ⊗M : T (m) = −m}.

Theorem 5.5. [JL01, p. 196] Let G be a finite group and M be a C[G]-module, then the

module M ⊗M decomposes into S(M ⊗M)⊕ A(M ⊗M).

Proof. Let T be as in Definition 5.4 then ∀m ∈M ⊗M and b ∈ C[G] we have:

bT

(∑
i,j

ficj(mi ⊗mj)

)
=
∑
k

bkgk
∑
i,j

ficj(mj ⊗mi)

=
∑
i,j,k

bkficjgk(mj ⊗ ni)

= T

(∑
i,j,k

bkficjgk(mi ⊗ nj)

)

= Tb

(∑
i,j

ficj(mi ⊗mj)

)
.

Hence, T : M ⊗M →M ⊗M is a C[G]-homomorphism. Let, s ∈ S(M ⊗M), a ∈ A(M ⊗M)

and b ∈ C[G] then T (bs) = bs and T (ba) = −ba. Therefore, bs ∈ S(M ⊗ M) and ba ∈
A(M ⊗M), hence, S(M ⊗M) and A(M ⊗M) are C[G]-submodules of M ⊗M .

If m is in the intersection of S(M ⊗M) and A(M ⊗M) then m = −m, hence, m = 0.

It follows that M ⊗M decomposes into S(M ⊗M)⊕ A(M ⊗M).

Corollary 5.6. Let M be a C[G]-module affording the character χ so the character of M⊗M
is χ2. Let S(M ⊗M) afford the character χS and A(M ⊗M) afford the character χA then

χ2 = χS + χA.

We will usually refer to χS and χA as the symmetric and antisymmetric decomposition

of χ2.

Lemma 5.7. [JL01, p. 197] Let m1, . . . ,mn be a basis for M ; then elements of the form

mi⊗mj + mj ⊗mi for 1 ≤ i ≤ j ≤ n are a 1
2
n(n+ 1) dimensional basis for S(M ⊗M) and

elements of the form mi ⊗mj −mj ⊗mi for 1 ≤ i < j ≤ n are a 1
2
n(n − 1) dimensional

basis for A(M ⊗M).

Proof. Clearly, elements of the two forms are linearly independent. Moreover, dim(S(M ⊗
M)) ≥ 1

2
n(n+ 1) and dim(A(M ⊗M)) ≥ 1

2
n(n− 1). But dim(M ⊗M) = dim(S(M ⊗M)) +

dim(A(M ⊗M)) = n2. Hence result.

55



Theorem 5.8. [JL01, p. 198] Let M be a C[G]-module affording character χ. Let M ⊗M
have symmetric and antisymmetric modules S(M ⊗M) and A(M ⊗M), then for g ∈ G we

have χS(g) = 1
2

(χ2(g) + χ(g2)) and χA(g) = 1
2

(χ2(g)− χ(g2)).

Proof. By Theorem 4.12, we can pick a basis of M such that g(mi ⊗ mj − mj ⊗ mi) =

ωiωj(mi⊗mj −mj ⊗mi) for complex numbers ωi and ωj. Hence, χA(g) =
∑

i<j ωiωj. Now,

as g2(mi) = ω2
imi, it follows that χ(g) =

∑
i ωi and χ(g2) =

∑
i ω

2
i . Observe that

χ2(g) =

(∑
i

ωi

)2

=
∑
i

ω2
i + 2

∑
i<j

ωiωj = χ(g2) + 2χA(g).

Hence, χA = 1
2
(χ2(g)− χ(g2)). As χ2 = χS + χA the result follows.

Example 30. The Character Table of Sym(4)

Recall from Example 7 that Sym(4) has 5 conjugacy classes with permutation cycle types

14, 1221, 1131 and 41. We can construct the trivial, sign and permutation characters denoted

χ0, χ1 and χ4 respectively. Note that each of these are irreducible.

Sym(4) 14 1221 22 1131 41

χ0 1 1 1 1 1

χ1 1 -1 1 1 -1

χ4 3 1 -1 0 -1

Let χS and χA denote the symmetric and antisymmetric decomposition of χ2
4 then we have:

χS 6 2 2 0 0

χA 3 -1 -1 0 1

χ2 2 0 2 -1 0

χ3 3 -1 -1 0 1

A quick calculation gives 〈χS, χS〉 = 3 and 〈χA, χA〉 = 1 therefore χA is irreducible. Check-

ing the inner product of χS with each known irreducible we find that 〈χS, χ0〉 = 1 and

〈χS, χ1χA〉 = 1. Let χA = χ3 and χ2 = χS − χ0 − χ3 and note that 〈χ2, χ2〉 = 1. Table 5.1

shows the full character table of Sym(4).

Sym(4) 14 1221 22 1131 41

χ0 1 1 1 1 1
χ1 1 -1 1 1 -1
χ2 2 0 2 -1 0
χ3 3 -1 -1 0 1
χ4 3 1 -1 0 -1

Table 5.1: The character table of Sym(4).
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5.2 Restricting and Inducing Characters

Let H ≤ G, then if M is a C[G]-module, M is also a C[H]-module. It follows that if M

affords a character χ of G then χ is also a character of H; we denote this character of H as

χ ↓ H. The character takes the value χ(h) for all h ∈ H and we term it the restriction of χ

to H.

If 〈·, ·〉G is the usual class function inner product for a group G, then 〈·, ·〉H will denote

the usual class function inner product but with respect to the group H.

Example 31. The Character Table of Alt(4)

As an example of restriction, we will calculate the character table of Alt(4). The conjugacy

classes of Alt(4) are the trivial class, a class of elements of cycle type 22, and two classes of

elements of cycle type 1131.

We immediately have the trivial character and as C2
2 / Alt(4) we can lift two characters

from Alt(4)/C2
2 . We will denote these χ0, χ1 and χ2 respectively.

Alt(4) 14 22 1131
A 1131

B

χ0 1 1 1 1

χ1 1 1 ω ω2

χ2 1 1 ω2 ω

Finally, we shall restrict χ4 one of the 3 dimensional characters from Sym(4) to Alt(4). Let

χ3 = (χ4 ↓ Alt(4)).

χ3 3 -1 0 0

We now observe that 〈χ3, χ3〉Alt(4) = 1, hence, χ3 is irreducible. The full character table is

given in Table 5.2.

Alt(4) 14 22 1131
A 1131

B

χ0 1 1 1 1
χ1 1 1 ω ω2

χ2 1 1 ω2 ω
χ3 3 -1 0 0

Table 5.2: The character table of Alt(4), where ω = e
2iπ
3 .

Just as we can restrict characters to subgroups, it is equally possible to induce characters

from a subgroup H to an overgroup G. If χ is a character of H then the induction of χ to G

is denoted χ ↑ G.
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Definition 5.9. [Isa94, p. 62] Induced Class Function

Let H ≤ G and let χ be a class function of H; then the induced class function on G is given

by:

(χ ↑ G)(g) =
1

|H|
∑
x∈G

χ̇(xgx−1) where χ̇(g) =

χ(g) for g ∈ H;

0 for g 6∈ H.

Theorem 5.10. [Isa94, p. 62] Frobenius Reciprocity Theorem

Let H ≤ G and suppose φ is a class function on H and ψ is a class function on G; then

〈φ, ψ ↓ H〉H = 〈φ ↑ G,ψ〉G.

Proof.

〈φ ↑ G,ψ〉G =
1

|G|
∑
g∈G

(φ ↑ G)(g)ψ(g)

=
1

|G| × |H|
∑
g∈G

∑
x∈G

φ̇(xgx−1)ψ(g).

Set y = xgx−1 and note that ψ(g) = ψ(y) then

〈φ ↑ G,ψ〉G =
1

|G| × |H|
∑
y∈G

∑
x∈G

φ̇(y)ψ(g)

=
1

|H|
∑
y∈H

φ(y)ψ(y)

= 〈φ, ψ ↓ H〉H .

Definition 5.11. [JL01, p. 235] We define the characteristic conjugacy class function on a

finite group G for an element x as

ζGx (g) =

1 if g ∈ xG;

0 otherwise.

Lemma 5.12. [JL01, p. 235] If χ is a character of G and x is an element of G then

〈χ, ζGx 〉G =
χ(x)

|CG(x)|
.
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Proof.

〈χ, ζGx 〉G =
1

|G|
∑
g∈G

χ(g)ζGx (g) =
1

|G|
∑
g∈xG

χ(g) =
χ(x)

|CG(x)|
.

Theorem 5.13. [JL01, p. 236] Let G be a finite group, x ∈ G and H ≤ G. Recall that

H ∩ xG breaks up into l conjugacy classes of H. Let χ be a character of H then:

(χ ↑ G)(x) = |CG(x)|
(

χ(x1)

|CH(x1)|
+ · · ·+ χ(xl)

|CH(xl)|

)
(5.2)

where x1, . . . , xl ∈ H are representative elements of the l classes of H.

Proof. Assume that xG breaks up into l conjugacy classes in H then, ζGx ↓ H = ζHx1
+ · · ·+ζHxl .

By Theorem 5.10 and Lemma 5.12 we have:

(χ ↑ G)(x)

|CG(x)|
= 〈χ, ζGx ↓ H〉H

= 〈χ, ζHx1
+ · · ·+ ζHxl 〉

= 〈χ, ζHx1
〉+ · · ·+ 〈χ, ζHxl 〉

=
χ(x1)

|CH(x1)|
+ · · ·+ χ(xl)

|CH(xl)|

The result follows.

We will end this section with 3 examples; the first is a calculation of the character table of

Alt(5), which we will use in the second example. The second example will be fundamental to

calculating the character tables of the small Mathieu groups. The final example is motivated

by Example 12.

Example 32. The Character Table of Alt(5)

Let G = Alt(5), then G has 5 conjugacy classes. We tabulate the orders of the classes in

Alt(5) and the centralisers in both H = Alt(4) < Alt(5) and Alt(5).

Cycle 15 1122 1231 51
A 51

B

Order 1 15 20 12 12

|CG(g)| 60 4 3 5 5

|CH(g)| 12 4 3 − −

Note that although the class of 5 cycles has split from Sym(5), an element g in one of these

classes is conjugate to g−1, but not to g2 or g3.
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We immediately obtain two irreducible characters of Alt(5), the trivial character χ0 and

the permutation character χ3. The permutation character is given by the fact that Alt(5)

acts 3-transitively on 5 points and applying Theorem 4.37.

Alt(5) 15 22 31 51
A 51

B

χ0 1 1 1 1 1

χ3 4 0 1 −1 −1

Let χ be a character of Alt(4) and let gA ∈ 1131
A and gB ∈ 1131

B; then by (5.2) we have

(χ ↑ Alt(5)) =



5χ(g) if g ∈ 15;

χ(g) if g ∈ 1122;

χ(gA) + χ(gB) if g ∈ 1231;

0 otherwise.

If we induce the trivial character of Alt(4) we obtain a character equal to χ0 + χ3. However,

inducing either of the complex 1-dimensional characters of Alt(4) gives a new irreducible

character of Alt(5), which we will denote χ4. The remaining two characters can be calculated

using the Schur orthogonality relations. The full character table is given in Table 5.3.

Alt(5) 15 22 31 51
A 51

B

χ0 1 1 1 1 1
χ1 3 −1 0 α β
χ2 3 −1 0 β α
χ3 4 0 1 −1 −1
χ4 5 1 −1 0 0

Table 5.3: The character table of Alt(5), where α = 1
2
(1 +

√
5) and β = 1

2
(1−

√
5).

Example 33. The Character Table of Alt(6)

Let G = Alt(6), then G has 7 conjugacy classes; these can be determined using the splitting

criteria and are given below.

Cycle 16 22 31 32 2141 51
A 51

B

Size 1 45 40 40 90 72 72

|CG(g)| 360 8 9 9 4 9 9

As Alt(6) acts 4-transitively on 6 points, by Theorem 4.37 points we immediately get a non

trivial irreducible character, which we will denote χ1.
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Alt(6) 16 22 31 32 2141 51
A 51

B

χ0 1 1 1 1 1 1 1

χ1 5 1 2 −1 −1 0 0

Let χS and χA be the symmetric and anti-symmetric decomposition of χ2
1, the character

values are given below.

χS 15 3 3 0 −1 0 0

χA 10 −2 1 1 0 0 0

We find that 〈χS, χS〉 = 3, 〈χS, χ0〉 = 1 and 〈χS, χ1〉 = 1. Define χ5 = χS − χ0 − χ1, and

note that χ5 is irreducible. Using the inner product again we find 〈χA, χA〉 = 1; let χ6 = χA,

then χ6 is irreducible.

We will now try inducing characters from Alt(5) to Alt(6). Let χ be a character of Alt(5),

then we can use the centraliser orders from the previous example to obtain the following

equation.

(χ ↑ Alt(6)) =



6χ(g) if g ∈ 15;

2χ(g) if g ∈ 1122;

3χ(g) if g ∈ 1231;

χ(g) if g ∈ 51
A, 5

1
B;

0 otherwise.

Inducing the trivial character of Alt(5) gives a character equal to χ0 + χ1. Let χA and χB

be the induced 3-dimensional characters. We find that 〈χA, χA〉 = 〈χB, χB〉 = 2 and χ6 is a

constituent of both χA and χB. Let χ3 = χA − χ6 and χ4 = χB − χ6; then both χ3 and χ4

are irreducible. Here, α = 1
2
(1 +

√
5) and β = 1

2
(1−

√
5).

χA 18 −2 0 0 0 α β

χB 18 −2 0 0 0 β α

χ3 8 0 −1 −1 0 α β

χ4 8 0 −1 −1 0 β α

The final character can easily be calculated using the Schur orthogonality relations. The full

table is given in Table 5.4.
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Alt(6) 16 22 31 32 2141 51
A 51

B

χ0 1 1 1 1 1 1 1
χ1 5 1 2 −1 −1 0 0
χ3 8 0 −1 −1 0 α β
χ4 8 0 −1 −1 0 β α
χ5 9 1 0 0 −1 −1 −1
χ6 10 −2 1 1 0 0 0

Table 5.4: The character table of Alt(6), where α = 1
2
(1 +

√
5) and β = 1

2
(1−

√
5).

Example 34. The Character Table of SL2(3)

We will use several techniques including induction to construct the character table of SL2(3).

Recall that SL2(3) is the set of invertible 2 × 2 matrices, with determinant equal to 1 and

with entries in F3. We constructed this group in Example 12. The conjugacy classes can be

determined by direct calculation and are given in Table 5.5.

Name C1 C2 C3A C3B C4 C6A C6B

Representative

[
1 0
0 1

] [
2 0
0 2

] [
1 1
0 1

] [
1 2
0 1

] [
0 2
1 0

] [
2 1
0 2

] [
2 2
0 2

]
Order 1 1 4 4 6 4 4

Centraliser 24 24 6 6 4 6 6

Table 5.5: The conjugacy classes of SL2(3).

First, observe that the union of the conjugacy classes C1, C2 and C4 is the group Q8.

Moreover, there are three cosets of SL2(3)/Q8, namely C3A ∪ C6B and C3B ∪ C6A. In fact,

Q8 is a normal subgroup and SL2(3)/Q8
∼= C3. We immediately get three characters, the

trivial character χ1 and two characters lifted from C3. Let ω = e
iπ
3 .

SL2(3) C1 C2 C3A C3B C4 C6A C6B

χ0 1 1 1 1 1 1 1

χ1 1 1 ω ω2 1 ω ω2

χ2 1 1 ω2 ω 1 ω2 ω

To obtain more characters we will attempt to induce characters from Q8 to SL2(3). The

following table shows how Q8 exists inside SL2(3) and lists the order of the centraliser of each

element.
Class in Q8 C1 C2 C4A C4B C4C

|CQ8(g)| 8 8 4 4 4

|CSL2(3)(g)| 24 24 4
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Let χ be a character of Q8 and let gA ∈ C4A, gB ∈ C4B and gC ∈ C4C . Then:

(χ ↑ SL2(3))(g) =


3χ(g) if g ∈ C1, C2;

χ(gA) + χ(gB) + χ(gC) if g ∈ C4;

0 otherwise.

Let χ6 and χX be the induced trivial character, and the induced 2-dimensional character of

Q8 to SL2(3) respectively. Then we obtain:

χ6 3 3 0 0 -1 0 0

χX 6 -6 0 0 0 0 0

As 〈χ6, χ6〉 = 1, we see that χ6 is irreducible. But, 〈χX , χX〉 = 3 and it is not orthogonal

to any known irreducible characters.

We will now attempt to induce characters from another subgroup isomorphic to C3. The

centraliser of every element in C3 is of size 3, whereas for order three elements in SL2(3) it is

of size 6. Now if χ is a character of C3, then:

(χ ↑ SL2(3))(g) =


8χ(g) if g ∈ C1;

2χ(g) if g ∈ C3A, C3B;

0 otherwise.

Let χZ be the induced trivial character from C3 to SL2(3). We have 〈χZ , χZ〉 = 4,

〈χZ , χ0〉 = 1 and 〈χZ , χ6〉 = 1. Let χY = χZ − χ0 − χ6.

χZ 8 0 2 2 0 0 0

χY 4 -4 1 1 0 -1 -1

We see that 〈χX , χY 〉 = 2. Now let χ4 = χX − χY , then 〈χ4, χ4〉 = 1. Hence, χ4 is

irreducible. Moreover, taking the tensor product of χ4 with either χ1 or χ2 gives a new

irreducible character. Table 5.6 shows the full character table.

SL2(3) C1 C2 C3A C3B C4 C6A C6B
χ0 1 1 1 1 1 1 1
χ1 1 1 ω2 ω4 1 ω2 ω4

χ2 1 1 ω4 ω2 1 ω4 ω2

χ3 2 -2 -1 -1 0 1 1
χ4 2 -2 ω5 ω 0 ω2 ω4

χ5 2 -2 ω ω5 0 ω4 ω2

χ6 3 3 0 0 -1 0 0

Table 5.6: The character table of SL2(3), where ω = e
iπ
3 .
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5.3 Characters of the Symmetric Group

In this section we will outline the construction of character values for the symmetric group.

We will not be proving results, our aim is simply to get to a usable formula. Recall that the

conjugacy classes of Sym(n) are indexed by partitions of n. We will denote a partition of

n = λ1 + · · ·+ λk as λ = (λ1, . . . , λk) with each λi ≥ λi+1.

Definition 5.14. [FH91, p. 45] Young Diagram

Given a λ a partition of n, the Young Diagram corresponding to λ is a left justified array of

boxes, with row i having λi boxes.

Example 35. The Young diagrams corresponding to the partitions of 3 are:

λ = (3) λ = (2, 1) λ = (1, 1, 1)

We now define a λ-tableau to be a numbering of a Young diagram with distinct numbers

from 1 to n. Given a λ-tableau t, we note that Sym(n) acts naturally on the set of symbols.

We define:

R(t) = {g ∈ Sym(n) : g preserves each row of t};

C(t) = {g ∈ Sym(n) : g preserves each column of t}.

Example 36. Let λ = (4, 3, 1) and let

tλ =

1 2 3 4

5 6 7

8

We see that Sym({1, 2, 3, 4}), Sym({5, 6, 7}) and Sym({8}) preserve every row. Hence,

R(t) = Sym({1, 2, 3, 4}) × Sym({5, 6, 7}) × Sym({8}). We also see that Sym({1, 5, 8}),
Sym({2, 6}), Sym({3, 7}) and Sym({4}) preserve every column. Hence, C(t) = Sym({1, 5, 8})×
Sym({2, 6})× Sym({3, 7})× Sym({4}).

Definition 5.15. [JK81, p. 41] λ-Tabloid

A λ-tabloid, denoted {t}, is the equivalence class of a λ-tableau t under the action of C(t).

We claim that the action of Sym(n) on the tableaux extends to the set of λ-tabloids. Let

{t} be a λ-tabloid, then we extend this action by defining ∀g ∈ Sym(n), g{t} = {gt}. Now,
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let Mλ be a C[Sym(n)]-module spanned by the C-linear combinations of tabloids. In general

this module is not irreducible, however a submodule of it is, which we are close to defining.

Definition 5.16. [JK81, p. 295] λ-Polytabloid

We define the λ-polytabloid, denoted e(t), of a λ-tableau t as:

e(t) = {t}
∑
g∈C(t)

sgn(g)g.

Here, sgn : Sym(n)→ {1,−1} is the usual sign homomorphism for permutation groups.

Definition 5.17. [JK81, p. 296] (Complex) Specht Module

Let λ be a partition of n. Let Mλ be a C[Sym(n)]-module spanned by the C-linear com-

binations of tabloids. We define the (complex) Specht module Sλ to be the subspace of Mλ

spanned by the λ-polytabloids. We denote the character of a Specht module by χλ.

Theorem 5.18. [JK81, p. 298] Let λ be a partition of n; then the (complex) Specht module

Sλ is irreducible and uniquely determined by λ.

We omit the proof of this theorem, however, a proof and a full exposition of the ideas be-

hind the proof can be found in James’s ‘The Representation Theory of the Symmetric Groups’

[Jam78]. We are almost ready to state the Frobenius character formula. The following result

is taken from [FH91], a proof can be found there as well.

Definition 5.19. [FH91, p. 48] The Frobenius Character Formula

Let λ be a partition of n. Introduce independent variables x1, . . . , xk with k greater than or

equal to the number of rows of the Young diagram. Define the following polynomials:

Pj(x) = xj1 + · · ·+ xjk;

∆(x) =
∏
i<j

(xi − xj).

Recall that λ = (λ1, . . . , λk) and set li = λi +k− i. We also let the partition Ci = (i1, . . . , in)

represent a conjugacy class of Sym(n). Here, each ij denotes the number of j-cycles in an

element of the class. The coefficient of xl11 . . . x
lk
k in

∆(x)
n∏
j=1

Pj(x)ij (5.3)

is exactly χλ(g) for g ∈ Ci.
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Example 37. Let n = 3 and let λ = (2, 1); this corresponds to the Young diagram:

We now introduce variables x1 and x2. Using li = λi + k − i, we have l1 = 3 and l2 = 1,

therefore we are looking at coefficients of x3
1x2. As there are two variables we see that

∆(x) = (x1 − x2).

Ci Polynomial Coefficient of x3
1x2

(3, 0, 0) (x1 − x2)(x1 + x2)3 = x4
1 + 2x3

1x2 + . . . 2

(1, 1, 0) (x1 − x2)(x1 + x2)(x2
1 + x2)2 = x4

1 − x4
2 0

(0, 0, 1) (x1 − x2)(x3
1 + x3

2) = x4
1 − x3

1x2 + . . . −1

Given that (3, 0, 0) is the identity, (1, 1, 0) is the class of transpositions and (0, 0, 1) is the

class of 3-cycles; we have just calculated the 2-dimensional character of Sym(3). This result

can be compared with Example 26.
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Chapter 6

Constructing the Small Mathieu

Groups

In this chapter we will construct the small Mathieu groups as a series of transitive extensions

of multiply transitive permutation groups. To do this we will apply Theorem 6.2 to a non

split extension of Alt(6) to obtain M11. Applying the same theorem to M11 will construct

M12.

6.1 Extending Multiply Transitive Groups

Theorem 6.1. [BW79, p .10] Let G act transitively on a set ∆ and let δ ∈ ∆. Then G is k-

transitive if and only if Gδ acts (k−1)-transitively on ∆−{δ}. Moreover, if G is k-transitive

on ∆ and k ≥ 2, then the following hold:

1. G = Gδ ∪GδgGδ for any g ∈ G such that g /∈ Gδ;

2. Gδ is a maximal subgroup of G.

Proof. Suppose that Gδ is (k − 1)-transitive on ∆ − {δ} and let α = (α1, . . . , αk), β =

(β1, . . . , βk) ∈ ∆(k). As G is transitive we can select elements g1, g2 such that g1(α1) = δ and

g2(β1) = δ. As Gδ is (k− 1)-transitive we can choose h ∈ Gδ such that h(g1(αi)) = g2(βi) for

i = 2, . . . , k. The element given by g−1
2 hg1 ∈ G sends α to β, hence, G is k-transitive.

For the converse, let (α1, . . . , αk), (β1, . . . , βk) ∈ ∆(k). As G acts transitively, there exists

g, h ∈ G such that gα1 = hβ1 = δ. Now, observe that (gα2, . . . , gαk) and (hβ2, . . . , hβk) are

elements of (∆− {δ})(k−1). Thus, there exists k ∈ Gδ such that k(gαi) = βi for i = 2, . . . , k.

Now, h−1(kgαi) = h−1(hβi) = βi for all i = 1, . . . , k. Therefore, Gδ acts (k − 1)-transitively

on ∆− {δ}.
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To prove (1), consider an element h ∈ G such that h /∈ Gδ. Now, let g1 ∈ Gδ and

g2 ∈ G such that g1(g−1
2 (δ)) = h−1(δ), then hg1g

−1
2 ∈ Gδ. It follows that h ∈ Gδg2δ, hence,

G = Gδ ∪GδgGδ.

To prove (2), assume that that there exists a subgroup H of G such that G ≥ H > Gδ.

By (1), G = Gδ ∪ GδgGδ for any g ∈ G such that g /∈ Gδ; pick a g ∈ H − Gδ, then

G = Gδ ∪GδgGδ ⊆ H which implies G = H. Hence, Gδ is maximal in G.

For the rest of this chapter we will construct a finite family of multiply transitive groups

called the small Mathieu groups, denoted M9, M10, M11 and M12. We will later discover

that M11 and M12 are 2 of the 26 sporadic simple groups. The construction we will use

follows a series of exercises from ‘Permutation Groups and Combinatorial Structures’ by

Biggs and White [BW79]. The following theorem will be fundamental to the construction of

the Mathieu groups.

Theorem 6.2. [BW79, p .12] Let G be a group acting k-transitively on ∆ with k ≥ 2. Let,

∆† = ∆ ∪ {?} and suppose we can find a permutation h of ∆† and a g ∈ G such that

1. h switches ? and some point δ ∈ ∆ and fixes some point ω ∈ ∆;

2. g switches δ and ω;

3. h2 and (gh)3 are in G

4. hGδh = Gδ.

If 1 to 4 hold then G† = 〈G, h〉 acts on ∆† (k + 1)-transitively.

Proof. By Theorem 6.1 we have G = Gδ ∪GδgGδ, we will now show that 〈G, h〉 = G∪GhG.

First, we will show that G ∪GhG is a group. We only need to show closure; since G ∪GhG
is closed under inverses (h2 ∈ G), it is sufficient to check that hGh ⊆ G ∪ GhG. Observe

that h2 fixes δ and h2 ∈ G so h2 ∈ Gδ, hence, by item 4 we have hGδ = Gδh. As (gh)3 ∈ G,

we have hgh ∈ (ghg)−1G = g−1h−1G = g−1hG. Now we can show that hGh ⊆ G ∪GhG;

hGh = h(Gδ ∪GδgGδ)h

= hGδh ∪ hGδgGδgGδh

= Gδ ∪Gδ · hgh ·Gδ

⊆ G ∪Gδ · g−1hG ·Gδ

⊆ G ∪GhG.
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It follows that GhG · GhG = G · hGh · G ⊆ G ∪ GhG, hence, G ∪ GhG = 〈G, h〉. As

nothing in GhG fixes ? it follows that (G†)? = G. Moreover, G† is (k + 1)-transitive on ∆†

by Theorem 6.1.

6.2 Constructing M9 and M10

We note that all proofs throughout this construction are original work guided by the exercises

in [BW79]. In addition, any explanatory notes, Theorem 6.8 and Theorem 6.10 are completely

original work.

Let G be a group acting on a set ∆, then G also acts on the set of subsets of ∆. Let

Λ ⊆ ∆, λ ∈ Λ and g ∈ G. If, for every λ ∈ Λ we have gλ = λ then g fixes Λ pointwise. If,

for every λ ∈ Λ we have gλ ∈ Λ then g fixes Λ setwise.

Let ∆ = {a, b, c, d, e, f} and let Sym(∆) act on ∆ as an object in Set, it follows that

Sym(∆) = AutSet(∆). Now define Ω = {0, . . . , 9} and identify each ω ∈ Ω with one of the

partitions of ∆ into two sets of three.

0 {abc}{def} 5 {ace}{bdf}
1 {abd}{cef} 6 {acf}{bde}
2 {abe}{cdf} 7 {ade}{bcf}
3 {abf}{cde} 8 {adf}{bce}
4 {acd}{bcf} 9 {aef}{bcd}

Proposition 6.3. Let G = Sym(∆), then G acts transitively and faithfully on Ω.

Proof. Consider G0, the pointwise stabiliser of 0 in Ω. Observe that {a, b, c} is fixed setwise

by Sym({a, b, c}) and {d, e, f} is fixed setwise by Sym({d, e, f}). Finally, 0 can be fixed

by swapping {a, b, c} with {d, e, f}. As all of {a, b, c} must be swapped with all of {d, e, f}
we need a permutation that acts by swapping elements of Sym({a, b, c}) with elements of

Sym({d, e, f}); one such permutation1 is (ae)(bf)(cd). It follows that2 G0 = (Sym(3) ×
Sym(3)) o C2 and |G0| = (6 × 6) × 2 = 72. Now, |G| = 720 and |Ω| = 10, by the Orbit

Stabiliser Theorem (Theorem 2.9),

|0G| = |G|/|G0| = 720/72 = 10 = |Ω.|

Hence, G acts transitively on Ω. Notice that the intersection of any five stabilisers of points

in Ω is trivial, hence G acts faithfully on Ω.

1Another is given by (afbe)(cd).
2This semi-direct product is actually a wreath product Sym(3) o Sym(2).
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Proposition 6.4. Let G = Sym(∆), then G acts 2-transitively on Ω but not 3-transitively.

Proof. The stabiliser of 0 and 1 is isomorphic to D8; this can be observed by considering

G01 = 〈(afbe)(cd), (ab)〉 and noting that G01 < AutGraph(Γ) where:3

Γ =

It follows that |G01| = 8. Now |G| = 720 and |Ω(2)| = 90, and by the Orbit Stabiliser

Theorem we have,

|(0, 1)G| = 720/8 = 90 = |Ω(2)|. (6.1)

Hence, G acts 2-transitively on Ω. On the other hand the point stabiliser G012 contains the

permutation (ab), and so since |Ω(3)| = 720 and |G|/|G012| < 720. It follows that G is not

3-transitive.

Proposition 6.5. Let H = Alt(∆) < G. Then H is 2-transitive on Ω, H01 = 〈(afbe)(cd)〉 ∼=
C4, H0 = 〈(afbe)(cd), (abc), (def)〉 and H = 〈H0, ψ〉 where ψ ∈ H −H0.

Proof. As H contains only the even permutations in G, the stabiliser H01 only contains the

even permutations of G01. The even permutations are exactly the elements generated by

the order four permutation (afbe)(cd), hence, H01 = 〈(afbe)(cd)〉. As H01 is generated by a

single order 4 element H01
∼= C4. The same argument applies to H0 (recall that in Sym(3)

the only even permutations are the identity and the three cycles), and it immediately follows

that H0 = 〈(afbe)(cd), (abc), (def)〉.
To see that H is 2-transitive, observe that by only considering even permutations we

have halved |G| and |G01|, therefore (6.1) remains unchanged and H is 2-transitive on Ω.

By 2-transitivity H0 is maximal in H, therefore adding another element ψ ∈ H − H0 must

generate H, hence H = 〈H0, ψ〉.

Proposition 6.6. Let φ1 = (abc) = (194)(285)(376), φ2 = (def) = (123)(456)(798), θ =

(afbe)(cd) = (2934)(5876) and ψ = (ab)(cd) = (01)(49)(56)(78) so H = 〈φ1, φ2, θ, ψ〉. Define

λ = (2735)(4698). Then λ /∈ H, but λ2 ∈ H and λ is an outer automorphism of H. In

particular H is a normal index 2 subgroup of 〈H,λ〉.
3AutGraph(Γ) ∼= D8 × C2.
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Proof. It is easy to see that λ /∈ H as λ /∈ H01 and λ stabilises both 0 and 1. As λ2 = θ2 we

see that λ2 ∈ H. To show λ is an outer automorphism we will check that the conjugate of

each generator of H by λ is in H.

λφ1λ
−1 = (2735)(4698)(194)(285)(376)(2537)(4896) = (186)(742)(539) = φ1φ2

λφ2λ
−1 = (2735)(4698)(123)(456)(798)(2537)(4896) = (175)(629)(384) = φ1φ

−1
2

λθλ−1 = (2735)(4698)(2934)(5876)(2537)(4896) = (2439)(5678) = θ−1

λψλ−1 = (2735)(4698)(01)(49)(56)(78)(2537)(4896) = (01)(43)(29)(68) = ψθ−1

Clearly, each conjugate is in H so λ ∈ AutGrp(H); as λ /∈ H and λ does not centralise H,

it follows that λ is an outer automorphism of H. As λ2 ∈ H it follows that H = λ2H,

multiplying both sides by λ gives λH = λ3H. Hence, there are two cosets of H in 〈H, λ〉 and

|〈H, λ〉 : H| = 2. As H is an index 2 subgroup, it follows that H / 〈H,λ〉.

Definition 6.7. The Mathieu Group M10

We define the Mathieu group on 10 points as M10 = 〈H,λ〉 = 〈φ1, φ2, θ, ψ, λ〉.

Theorem 6.8. M10
∼= Alt(6)·C2.

We know that |M10 : Alt(6)| = 2, to show that M10 is a non split extension it suffices

to show there are no order 2 elements in λAlt(6). If there were any order two elements in

λAlt(6) then the following short exact sequence would split:

{1} Alt(6) M10 C2 {1}.

Proof. Recall that M10 = 〈φ1, φ2, θ, ψ, λ〉 and Alt(6) = 〈φ1, φ2, θ, ψ〉. Let Q = 〈θ, ψ, λ〉; then

Q ∈ Syl2(M10). Let P = 〈ψ, θ〉; then P ∈ Syl2(Alt(6)). It follows that |Q : P | = 2 and

P /Q, moreover, Q/P = {P, λP}. To check there are no order 2 elements in λAlt(6), we just

need to check there are no order 2 elements in λP .

P λP

1 λ = (2735)(4698)

θ = (2934)(5876) λθ = (2836)(4795)

θ2 = (23)(49)(57)(68) λθ2 = (2537)(4896)

θ3 = (2439)(5678) λθ3 = (2638)(4597)

ψ = (01)(49)(56)(78) λψ = (01)(48359627)

θψ = (01)(43)(68)(29) λθψ = (01)(45289736)

θ2ψ = (01)(23)(58)(67) λθ2ψ = (01)(25463798)

θ3ψ = (01)(24)(39)(57) λθ3ψ = (01)(26953847)
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As there are no order 2 elements in λP , there are no order 2 elements in λAlt(6) and we see

that M10 = Alt(6)·C2.

Definition 6.9. The Mathieu Group M9

Let G = M10 then we define the Mathieu group on 9 points as M9 = G0. That is, M9 is the

point stabiliser of 0 in M10 acting on Ω.

Theorem 6.10. Let G = M10. Then |G| = 720, G is sharply 3-transitive on Ω, G01
∼= Q8 and

G0
∼= F2

3 oη Q8 where Q8 is acting via the faithful two-dimensional irreducible representation

over F3.

Proof. Recall that G = 〈φ1, φ2, θ, ψ, λ〉. Let H = 〈φ1, φ2, θ, ψ, λ〉 ∼= Alt(6) < G and recall

that H0 = 〈φ1, φ2, θ〉 and H01 = 〈θ〉. As G is an extension of H by λ and λ fixes both 0 and

1, it follows that G0 = 〈φ1, φ2, θ, λ〉 and G01 = 〈θ, λ〉. The only permutation that fixes three

points is the identity, hence G012 = {1}. We can see that |G| = 2×|Alt(6)| = 2× 1
2
×6! = 720.

Consider the orbit of (0, 1, 2). We have |(0, 1, 2)G| = |G|/|G012| = 720 = |Ω(3)|. Clearly, G

acts sharply 3-transitive on Ω.

Now, G01 = 〈θ, λ〉, it is easy to θ2 = λ2 = (θλ)2 and (θλ)4 = 1. Recall the presentation

for Q8 is 〈i, j, k : i2 = j2 = k2 = ijk, (ijk)2 = 1〉. Now, set i = θ and j = λ; then k = θλ and

we see that Q8
∼= 〈θ, λ : θ2 = λ2 = (θλ)2, (θλ)4 = 1〉. It is immediate that Q8

∼= G01.

Consider φ1 and φ2. As φ1, φ2 and their product are order 3, and each of those elements

commute it follows that 〈φ1, φ2〉 ∼= C2
3 . Now define an action:

ε : 〈θ, λ〉 × 〈φ1, φ2〉 → 〈φ1, φ2〉 by ε(g, φ) 7→ gφg−1.

The triple (〈θ, λ〉, 〈φ1, φ2〉, ε) is an object in GSet. Define an embedding:

ξ1 : 〈θ, λ〉 → GL3(2) by θ 7→

[
0 2

1 0

]
and λ 7→

[
1 1

1 2

]
.

This Q8 < GL3(2) acts on F2
3 as an object in VectF3 by matrix multiplication (we saw this

in Example 12). The triple (Q8,F2
3, η) is an object in GSet. Define a group isomorphism

ξ2 : 〈φ1, φ2〉 → F2
3 by φ1 7→ [1 0]ᵀ and φ2 7→ [0 1]ᵀ .

72



The pair (ε1, ε2) is an arrow in GSet. Moreover, the following diagram commutes.

〈θ, λ〉 × 〈φ1, φ2〉 Q8 × F2
3

〈φ1, φ2〉 F2
3

ε

(ξ1,ξ2)

η

ξ2

It follows that 〈φ1, φ2, θ, λ〉 ∼= F2
3 oη Q8.

6.3 Constructing M11 and M12

Proposition 6.11. Let G = M10 and let Λ = ∆ ∪ {X} then µ = (0X)(47)(59)(68) and

ψ = (01)(49)(56)(78) satisfy the conditions of Theorem 6.2.

Proof. To see (1) and (2), we observe that µ switches 0 and X but fixes 1, and that ψ switches

0 and 1. To see (3) we note that µ2 = 1 so µ2 ∈ G and we shall check that (ψµ)3 ∈ G:

(ψµ)3 = ((0X)(47)(59)(68)(01)(49)(56)(78))3

= ((01X)(458)(697))3

= 1.

Hence, (ψµ)3 ∈ G. Finally, we can verify (4) by calculating µG0µ, as µ is order 2. We can

just check the conjugates of the generators of G0:

µφ1µ = µ(194)(285)(376)µ = (157)(269)(348) = φ2
1φ2;

µφ2µ = µ(123)(456)(798)µ = (123)(798)(456) = φ2;

µθµ = µ(2934)(5876)µ = (2637)(9648) = λ−1;

µλµ = µ(2735)(4698)µ = (2439)(7856) = θ−1.

Hence, µG0µ = G0 and it follows that 〈G, µ〉 is a transitive extension of G.

Definition 6.12. The Mathieu Group M11

We define the Mathieu group on 11 points as M11 = 〈φ1, φ2, θ, ψ, λ, µ〉 = 〈M10, µ〉.

Theorem 6.13. Let G = M11. Then |G| = 7920, G is sharply 4-transitive on Λ and G is a

proper subgroup of Alt(11).

73



Proof. Let H = M10 = GX , then G012X = H012 = {1} and it follows that H is sharply 4-

transitive. By the Orbit Stabiliser Theorem we see that |G| = |Λ| × |GX | = 11× 720 = 7920.

As G is a permutation group on 11 points, is composed of only even permutations, and has

order less than 1
2
× 11!; it follows that G < Alt(11).

Proposition 6.14. Let G = M11 and Π = Λ ∪ {∞}, then σ = (X∞)(49)(58)(67) and

µ = (0X)(47)(59)(68) satisfy the conditions of Theorem 6.2.

Proof. To see 1 and 2 we observe that σ switches X and ∞ but fixes 0 and that µ switches

0 and X. To see 3 we note that σ2 = 1 so σ2 ∈ G and we shall check (µσ)3 ∈ G:

(µσ)3 = ((47)(59)(68)(0X)(49)(58)(67)(x∞))3

= ((456)(789)(0X∞))3

= 1.

Finally we can verify 4 by calculating σGXσ. As σ is order 2 we can just check the conjugates

of the generators of GX .

σφ1σ = σ(194)(285)(376)σ = (149)(258)(367) = φ2
1;

σφ2σ = σ(123)(456)(798)σ = (123)(798)(456) = φ2;

σθσ = σ(2934)(5876)σ = (2439)(8567) = θ−1;

σλσ = σ(2735)(4698)σ = (2638)(9745) = θλ;

σψσ = σ(01)(49)(87)(56)σ = (01)(49)(87)(56) = ψ.

Hence, σGXσ = GX and it follows that 〈G, σ〉 is a transitive extension of G.

Definition 6.15. The Mathieu Group M12

We define the Mathieu group on 12 points as M12 = 〈φ1, φ2, θ, ψ, λ, µ, σ〉 = 〈M11, σ〉.

Theorem 6.16. Let G = M12. Then |G| = 95040, G is sharply 5-transitive on Π and G is

a proper subgroup of Alt(12).

Proof. Let H = M11 = G∞. Then G012X∞ = H012X = {1} and it follows that G is sharply 5-

transitive. By the Orbit Stabiliser Theorem we see that |G| = |Π|×|G∞| = 12×7920 = 95040.

As G is a permutation group on 12 points, is composed of only even permutations and has

order less than 1
2
× 12!, it follows that G < Alt(12).
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Chapter 7

Conjugacy Class Structure of the

Small Mathieu Groups

Before we can calculate the character tables of the small Mathieu groups we need to find

out their conjugacy classes, note that we are not allowing ourselves the use of a computer.

This chapter is completely self contained and all work here is original. There are two main

approaches detailed in this chapter.

Firstly, we assume that G is group that acts sharply 5-transitively on 12 points and see

how much information about G we can obtain; this approach is detailed in Section 7.1. The

author believes that it may be possible to fully describe the conjugacy class structure of such

a group G, without using the fact that M12 is the only sharply 5-transitive group.

The second approach involves calculating the conjugacy classes of various point stabilisers

and subgroups of M12; as well as using information proved in Section 7.1, to obtain the a

full conjugacy class description of the small Mathieu groups. This approach is detailed in

sections 7.2 to 7.4.

7.1 The Conjugacy Classes of a Sharply 5-Transitive

Group Acting on 12 Points

Lemma 7.1. Let G < Alt(12) be a sharply 5-transitive group on Ω, a set of 12 points, and

let P be a Sylow 3-subgroup of G. Then P ∼= He(3).

Recall the definition of He(3) as the set of unitriangular matrices with entries in F3. Note

that all non-trivial elements of He(3) have order 3, hence there are no elements of order 9 in

G.
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Proof. Observe that |P | = 27. There are five groups of order 27, three abelian and two

non-abelian.

Let us suppose first that P is abelian. Suppose that Λ is an orbit of P in its action on Ω,

and let λ ∈ Λ. Then, since P is abelian, any elements that fixes λ must fix every element in

Λ. Since no element of G fixes more than 4 points, this means that |Λ| = 1 or 3. The group

P must not fix more than 4 points, thus there are at least two orbits of P of size 3, call these

Λ1 and Λ2. Now, the Orbit Stabiliser Theorem asserts that P has a subgroup P1, of order

9, that fixes every element of Λ1; similarly P has a subgroup P2, of order 9, that fixes every

element of Λ2. But now P1 ∩ P2 is non-trivial (by order considerations) and an element in

the intersection fixes at least the 6 points of Λ1 ∪ Λ2. This is a contradiction.

Suppose, then, that P is the non-abelian group of order 27 that is not He(3). This is the

extraspecial group of exponent 9; it has center, Z, of order 3; it has a normal elementary-

abelian subgroup, P0, of order 9; and all the elements in P \ P0 are of order 9. It is easy to

check that the cube of each of these elements of order 9 lie in Z. One concludes immediately

that any subgroup of P of order 9 must contain the center. But now observe that a point-

stabiliser, Gα, in G has order divisible by 9.

Since no element of P can fix more than 4 points, a simple counting argument implies

that the eight elements of P of order 3 each fix exactly 3 points, while the 18 elements of P

of order 9 are all fixed-point-free. In addition the elements of Ω are partitioned into four sets

of size 3, each of which is the fixed set for one of the four subgroups of P of order 3. But this

contradicts the fact that a point-stabiliser of G has order divisible by 9 and we are done.

Proposition 7.2. Let G < Alt(12) be a sharply 5-transitive group on 12 points. Then the

only possible cycle types of the conjugacy classes of G are 112, 1424, 26, 1333, 34, 1442, 2242,

52, 62, 213161, 2181, 4181, 21101 and 11111.

Proof. Note the following two facts about G: Firstly, |G| = 12× 11× 10× 9× 8 = 26× 33×
5 × 11 = 95040. Secondly, no element of G can fix more than four points, otherwise, the 5

point stabiliser would be non-trivial. By this second fact, we can immediately ignore every

cycle type that fixes more than four points.

We can immediately rule out any elements with order divisible by 7 as 7 does not divide

the order of the group. No element of cycle type 121 is in G because an element of that cycle

type would be an odd permutation and therefore not in Alt(12). Any other conjugacy class

must be of cycle type 1k2a3b4c5d6e8f9g10h11i.

An 11 cycle is even and fixes 1 point, therefore, 11111 is a possible conjugacy class of G.

An element with cycle type 12101 is odd and cannot be in G, however, 21101 is even and does

not fix any points, therefore 21101 is a possible conjugacy class of G.
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By Lemma 7.1 there are no elements of order 9 or 27 in G, therefore there cannot be

elements of cycle type 1391, 112191 or 3191 in G.

For cycles of type 1k2a3b4c8f with f ≥ 1, the cycles of the form 1481, 2281 and 113181 are

all odd. However, 122181 and 4181 are both possible conjugacy classes of G.

For cycles of type 1k2a3b4c5d6e it is easy to see that 62 and 213161 are possible conjugacy

classes of G. Observe that 115161, 214161, 3261, 133161 and 142261 are odd. Squaring either

of 142261 or 2361 will give a permutation that fixes too many points. So will raising 4161 to

the 4th power. Any other permutations of this cycle type fix too many points.

For cycles of type 1k2a3b4c5d with d ≥ 1 we can see that cycles of the form 152151, 112351,

12213151, 114151 and 314151 are odd. Consider an element of the form 112251. Squaring such

an element would give an element of cycle type 1751, which fixes too many points to be in G,

therefore, elements of the form 112251 are not in G. Elements of the form 143151 and 113251

cannot be in G as cubing them gives an element of the form 1751. It is easy to see that 1252

is a possible conjugacy class of G and that any other cycle type fixes too many points.

For cycles of type 1k2a3b4c with c ≥ 1, the possible conjugacy classes in G are 1442 and

2242. We can see that 43, 2441, 123241, 122142 and 11223141 are not possible because they

are odd. Moreover, raising any of 113142, 13213141, 13213241 to the fourth power will yield a

permutation which fixes too many points; hence, none of these are in G. Finally, squaring

122341 yields a permutation which fixes too many points, so this cannot be in G either. Any

other permutations of this cycle type will fix too many points.

For elements with cycle type 1k2a3b, squaring an element of this form will yield an element

of cycle type 1k23b; whereas cubing such an element will yield an element of cycle type 1k32a.

It follows that either a = 4, 6 and b = 0 or b = 3, 4 and a = 0, any other cycle type will fix

too many points.s.

Proposition 7.3. There is at least one conjugacy class of cycle type 1252 and at least one

conjugacy class of cycle type 11111.

Proof. As these are the only possible cycle types containing the primes 5 and 11 and we

know that G must have subgroups of size 5 and 11 it follows there must be at least one of

each conjugacy class.

Proposition 7.4. Let G < Alt(12) be a sharply 5-transitive group on 12 points, then G must

contain elements of at least one of the following cycle types: 1333 and 34.

Proof. As 33 divides the order of G so there must be at least one conjugacy class of order

3 elements. Proposition 7.2 states that the only elements whose orders are a power of 3 are

the elements of cycle type 1333 and 34.
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Lemma 7.5. Let G < Alt(12) be a sharply 5-transitive group on 12 points, let g ∈ G such

that g has cycle type 11111 and let H = 〈g〉, then CG(H) = H and |NG(H)| = 55.

Proof. It is immediate that H ∼= C11 and that Aut(H) ∼= C10. It is easy to see that the

only elements in Alt(12) that commute with g are the ones generated by g, if follows that

CG(H) = H. By Theorem 2.16 we know that NG(H)/CG(H) is isomorphic to a subgroup of

C10, the subgroups of C10 are {1}, C2, C5 and C10. Looking at Proposition 7.2 we see that

the only possible cycle type that could act non-trivially on H in Grp is 1252. The involutions

and the class 21101 move 8 or 12 points, which will not preserve the structure of H.

Suppose NG(H) = H, then the number of Sylow 11-subgroups n11 would equal |G|/|H| =
|G|/11. As all of the Sylow 11-subgroups intersect trivially the number of elements of order

11 is equal to 10
11
|G|. Let K be a point stabiliser of G acting on 12 points, then |K| = 1

11
|G|.

It follows that 11 does not divide |K| and K has no order 11 elements.

K
Order 11

elements

G

But then K has no conjugates as there is nothing to conjugate it to. Hence K must be normal

in G. Now, every point stabiliser must be conjugate to K, but this means that K is the

stabiliser of every point, a contradiction. From this we can deduce that NG(H)/CG(H) ∼= C5

and it follows that |NG(H)| = |C11| × |C5| = 55.

Proposition 7.6. Let G < Alt(12) be a sharply 5-transitive group on 12 points, then there

are exactly 2 conjugacy classes of elements with cycle type 11111.

Proof. Let g ∈ G be an element of order dividing 11; then g must be an element of cycle

type 11111 because G is a permutation on 12 points. Now CG(g) = 〈g〉 ∼= C11, hence, by

Theorem 2.9 we can see that |gG| = 12 × 10 × 9 × 8 when acting by conjugation. Now, let

P ∈ Syl11(G) and let n11 be the number of Sylow 11-subgroups. As the multiplicity of 11

in |G| is 1, the conjugates of P intersect trivially, it follows that the number of elements of

order 11 is equal to 10×n11. By Lemma 7.5 we see that |NG(〈g〉)| = 55, hence, Theorem 2.16

gives n11 = 12×11×10×9×8
11×5

= 12× 9× 8× 2. Moreover, the number of elements of order 11 is

equal to 10n11 = 10× (12× 9× 8× 2) = 2× |gG|.

Lemma 7.7. Let G < Alt(12) be a sharply 5-transitive group on 12 points, then G has

exactly one conjugacy class of elements of cycle type 1252. Moreover, for g of cycle type 1252

we have CG(g) ∼= C10 and |NG(〈g〉)| = 40.
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Proof. Let g be an element of cycle type 1252 and let H = 〈g〉. As g is composed of two 5

cycles, it is easy to see that 〈g〉 ∼= C5. Now, G is 5-transitive, so we can pick an element

h ∈ G, such that when h conjugates g, h sends one of the 5 cycles of g to its inverse. Let gh

denote this conjugate, if ghg 6= 1 then ghg fixes 5 points, a contradiction. Therefore ghg = 1

and gh = g−1. The same argument can be used to show that g is conjugate to g2 and g3. It

follows that there is a unique conjugacy class of elements of cycle type 1252.

The elements that conjugate g to its powers must normalise H, therefore |NG(H)| ≥ 4|H|.
As NG(H)/CG(H) embeds into Aut(H) and we have described a full set of automorphisms for

H, it follows that NG(H)/CG(H) ∼= Aut(H). Moreover, |CG(H)| = |H| = 5 and |NG(H)| =
20, therefore the number of Sylow-5 subgroups n5 must equal 4752 which does not equal 1

(mod 5). Hence |NG(H)| > 4|H| and |CG(H)| > |H|.
An element k where k2 = g of cycle type 21101 could centralise H and the subgroup

generated by k would be the maximal possible centraliser of H in G. In fact this is the only

possible centraliser for H in G as other elements in CAlt(12)(H) fix too many points. We can

conclude that CG(H) ∼= C10 and |NG(H)| = 40.

Furthermore, let n5 be the number of Sylow 5-subgroups and note that they intersect

trivially. We have |NG(H)| = 40 hence n5 = 2376 by Theorem 2.16. The number of elements

of cycle type 1252 in G is 4n5 = 9504.

Corollary 7.8. Let G < Alt(12) be a sharply 5-transitive group on 12 points, then G contains

exactly one conjugacy class of cycle type 21101 and at least one conjugacy class of cycle type

26.

Proof. The subgroup K = 〈k〉 ∼= C10 must contain an order 10 element, the only possible

cycle type that is order 10 is 21101. Raising such an element to the fifth power gives an

element of cycle type 26. It is easy to see that CG(K) = K and |NG(H)| = |NG(K)|.
There are 4 elements of order 10 in K given by {k, k3, k7, k9}, it follows that the number of

elements of order 10 is equal to 4n5 = 9504. By Theorem 2.9, under the conjugation action,

|kG| = 9504, hence, every element of cycle type 21101 in G is conjugate.

We shall summarise the key results from this section. If G < Alt(12) is a sharply 5-

transitive group on 12 points, then G contains exactly one class of elements of the following

cycles types: 112, 1252 and 21101. Moreover, both of the later classes have 9504 elements. G

contains two conjugacy classes of cycle type 11111, each with 8640 elements. G also contains

at least one conjugacy class of cycle type 26. Finally, the Sylow 3-subgroup of G must be

He(3) and G must contain at least one of the conjugacy classes 1333 or 34.
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7.2 The Conjugacy Classes of M9 and M10

Cycle Type 19 1124 33 1142 1142 1142

Size 1 9 8 18 18 18
Centraliser 72 8 9 4 4 4

Table 7.1: The conjugacy classes of M9.

Theorem 7.9. The conjugacy classes of M9 are exactly those given in Table 7.1.

Proof. Recall that M9
∼= F2

3 oη Q8 = 〈φ1, φ2, θ, λ〉 with F2
3 / M9. It follows that there can

only be elements of orders containing powers of 2 or 3. However, there are not any elements

of order 6 in M9. To show this, let g ∈ M9 be an order 6 element. Such an element must

be the product of an involution with an order 3 element; that is 〈g〉 ∼= C6
∼= C3 × C2. But

observe, an involution in M9 corresponds to −I2, where I2 is the identity matrix. Hence, an

involution does not fix any non zero vector, therefore, any product of the elements would be

a non trivial semi-direct product, which does not contain elements of order 6. It follows that

every element is of order 1, 2, 3 or 4.

Under the action of Q8, the order 3 elements form one single conjugacy class of M9 with

cycle type 33. There are 8 such elements and their centraliser is isomorphic to the group

C2
3 . Any remaining classes must come from the copies of Q8 in the group. As Q8 is the

Sylow 2-subgroup of M9, it is easy to deduce that there are 9 copies of Q8, all of which are

conjugate.

Assume that two or more of the conjugates of Q8 do not intersect trivially. It follows

that this intersection must contain an involution. Moreover, this involution must be the only

involution in each Q8. But now the centraliser of the involution is a power of 2 bigger than

8; this does not divide |M9|, a contradiction. Hence, every copy of Q8 intersects trivially.

We can now obtain the numbers of the order 2 and 4 elements. There are 9 elements of

type 1124, all of which are conjugate. There are 3× 18 = 54 elements of type 1124, each one

of these is centralised by a subgroup of size 4. An application of Theorem 2.9 and a simple

counting argument shows that there must be 3 classes of elements 1124.

Cycle Type 110 1224 1133
A 1133

B 1242 52
A 52

B

Size 1 45 40 40 90 72 72
Centraliser 360 8 9 9 4 5 5

Table 7.2: The conjugacy classes of Alt(6) acting on 10 points.
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Theorem 7.10. The conjugacy classes of Alt(6) acting on 10 points are exactly those given

in Table 7.2.

Proof. We know that Alt(6) contains every class of even permutations. The splitting crite-

ria (Theorem 2.17) states that the class of elements of order 5 will split. Now, the result

immediately follows from the construction of the action of Alt(6) given in Section 6.2.

Lemma 7.11. Let P ∈ Syl2(Alt(6)) then NAlt(6)(P ) = P .

Proof. Let n2 be the number of Sylow 2-subgroups of Alt(6). By Theorem 6.8 we have

P ∼= D8 and |P | = 8. By Theorem 2.21 we have n2 ≡ 1 mod 2 and that n2 divides 45.

There are 6 possibilities for n2: 1, 3, 5, 9, 15 or 45. Alt(6) is simple so n2 6= 1. Moreover,

Alt(6) does not have subgroups of size 40, 72 or 120, therefore n2 6= 9, n2 6= 5 and n2 6= 3.

The only subgroup of size 24 is Sym(4), but D8 is not normal in Sym(4). Therefore n2 = 45

and P is self normalising.

Cycle Type 110 1224 1133 1242
A 1242

B 52 2181
A 2181

B

Size 1 45 80 90 180 144 90 90
Centraliser 720 16 9 8 4 5 8 8

Table 7.3: The conjugacy classes of M10.

Theorem 7.12. The conjugacy classes of M10 are exactly those given in Table 7.3.

Proof. Recall that M10 = 〈φ1, φ2, θ, ψ, λ〉. A consequence of Theorem 6.8 is there are no

order 2 elements in λAlt(6). Hence, there are exactly 45 elements of order 2 in one conjugacy

class 1224 (these elements are from Alt(6)).

By order considerations every order 3 element must be contained inside a copy of M9. As

M9 is a one point stabiliser of M10 they are all conjugate. Moreover, these elements move 9

points; therefore each element is contained in exactly one copy of M9. It follows that there

is only one class of elements 33 with 80 elements.

Recall that M10 = Alt(6) ∪ λAlt(6) and that elements of λAlt(6) conjugate elements of

Alt(6), to elements of Alt(6). Let g be an element of order 5 in Alt(6), then |CAlt(6)(g)| =

|CM10(g)| = 5. By Theorem 2.9 it follows that the two classes of order 5 elements in Alt(6)

are fused into one class of size 144. It is also immediate that there is a class of elements

(from Alt(6)) of cycle type 1242 containing 90 elements (class 1242
A).

By Lemma 7.11 a Sylow 2-subgroup of Alt(6) is self normalising, has size 8 and index

45. Now, the Sylow 2-subgroups of M10 are non split extensions of the Sylow 2-subgroups of

Alt(6). It immediately follows that the Sylow 2-subgroups of M10 are of size 16, have index

45 and are self normalising.
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Let Q ∈ Syl2(M10) and P < Q with P ∈ Syl2(Alt(6)), so Q = P ∪ λP . By Theorem 6.8

there are 4 elements of cycle type 1242 and 4 elements of cycle type 2181 in λP . Moreover, in

Q there are 2 classes of cycle type 1242, one with 2 elements and one with 4. There are also 2

classes of elements of cycle type 2181. As all Sylow subgroups are conjugate, we can deduce

that there is exactly two classes of elements with cycle type 2181, each with 90 elements.

Finally, we can see a second class of elements of cycle type 1242, containing 180 elements

(class 1242
B).

7.3 The Conjugacy Classes of M11

Cycle Type 111 1324 1233 1342 1152 213161 112181
A 112181

B 111
A 111

B

Size 1 165 440 990 1584 1320 990 990 720 720
Centraliser 7920 24 18 8 5 6 8 8 11 11

Table 7.4: The conjugacy classes of M11.

Theorem 7.13. The conjugacy classes of M11 are exactly those in Table 7.4.

Proof. Recall that M11 acts sharply 4 transitively on a set of size 11, and the 3 point stabiliser

of the action is isomorphic to Q8. Hence there are 165 conjugate copies of Q8 in M11. We

immediately see that there are 165 elements of cycle type 1224, and that they are all conjugate.

Moreover, we see that there are 165 × 6 = 990 elements of cycle type 1324. By considering

the centraliser of such an element we can deduce that these are all conjugate.

We can use a similar argument for elements of cycle type 1233 in M9 and for elements of

cycle type 1152 in M10. We see that there is one class of each, with 440 and 1584 elements

respectively. We can also see that there are 2 × 990 elements of cycle type 112181. By

considering the centraliser of such an element, we can deduce that there are exactly two

equally sized classes of these elements.

An argument almost identical to the one given in Proposition 7.6 shows that there are 2

classes of cycle type 111, each with 720 elements. Finally, an element of cycle type 213161

has a centraliser of size 6, hence, there are 1320 elements of this type.

7.4 The Conjugacy Classes of M12

We begin this section by remarking that P = 〈θ, λ, ψ, σ, ζ〉, where ζ = µψσµ−1, is a Sylow

2-subgroup of M12. The conjugacy classes of P are given in Table 7.5. We note that |P | = 64

and that Z(P ) ∼= C2.
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Representative Element Size Centraliser
1 1 64

(23)(49)(57)(68) 1 64
(01)(57)(68)(X∞) 2 32
(0∞)(1X)(49)(68) 4 16
(49)(58)(67)(X∞) 8 16

(01)(25)(37)(48)(69)(X∞) 4 16
(0∞)(1X)(26)(38)(47)(59) 4 16
(0∞)(1X)(24)(39)(56)(78) 4 16

(2439)(5678) 2 32
(2537)(4896) 4 16

(0∞1X)(5678) 4 16
(01)(X∞)(2439)(5876) 2 32
(23)(49)(0∞1X)(5876) 4 16
(0∞)(1X)(2537)(4698) 4 16

(X∞)(25983746) 8 8
(0∞1X)(25483796) 8 8

Table 7.5: The conjugacy classes of a Sylow 2-subgroup of M12.

Cycle Type Centraliser Class Size Cycle Type Centraliser Class Size
112 95040 1 1252 10 9504
1424 192 495 62 12 7920
26 240 396 11213161 6 15840

1333 54 1760 122181 8 11880
34 36 2640 4181 8 11880

1442 32 2970 21101 10 9504
2242 32 2970 11111 11 8640× 2

Table 7.6: The conjugacy classes of M12.

Theorem 7.14. The conjugacy classes of M12 are exactly those given in Table 7.6

Proof. From Section 7.1 we immediately obtain counts and centraliser orders of the classes

1252, 21101 and both classes of 11111. We can adapt the point stabiliser arguments from

Theorem 7.13. Considering Q8 as a 4 point stabiliser, we see there are 495 elements of cycle

type 1424 and they are all conjugate. We also see that there are 2970 elements of type 42,

and using the class structure of M11, we see these are all conjugate.

By considering M9 as a 3 point stabiliser, we immediately see there are 1760 elements of

cycle type 1333 in a single conjugacy class of M12. Moreover, considering M11 as the 1 point

stabiliser immediately gives 15840 elements of cycle type 11213161 in a single conjugacy class

of M12.
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By considering M10, we obtain that there are 11880 elements of cycle type 122181 in M12.

We now need to use information about the Sylow 2-subgroups of M12. There is exactly

one class of elements 122181 and one class of elements 4181 in any Sylow 2-subgroup; hence,

there is exactly one of each in M12, each with 11880 elements. By considering the number of

elements of type 1442, we see that there are 2970 elements of type 2242.

Let P3 = 〈φ1, φ2, σµ〉, then P3 ∈ Syl3(M12). Note that Z(P3) = 〈φ2〉, hence, Z(P3) only

contains elements of cycle type 1333. Now, observe that the point stabiliser of X, 0 and ∞
in P3, it is exactly 〈φ1, φ2〉.

We note at this point that we have described 84084 elements of M12, there are 10956

elements left. Now, let g be an element of cycle type 62, then |CAlt(12)(g)| = 6×6×2
2

= 36.

If we remove any elements which fix more than 5 points from CAlt(12)(g), we are left with

31 elements, 4 of which are order 3. Now, |CM12(g)| must divide |CAlt(12)(g)|, therefore

|CM12(g)| = 3, 6, 12 or 18. If |CM12(g)| = 18 then there must be 8 elements of order 3, but

there are at most 4 such elements. Hence, |CM12(g)| = 3, 6 or 12, by considering |M12|, we

see that |CM12(g)| = 12, otherwise there will be too many elements in M12. We verify the

existence of such an element by considering that θφ2ψµσ = (129∞X0)(357864).

There are 3036 elements left. Let g be an element of cycle type 34; such an element can be

obtained by squaring an element of cycle type 62. Now, |CAlt(12)(g)| = 972 and as Z(P3) only

contains elements of cycle type 1333, we have |CP (g)| = 9. Moreover, |CM12| is divisible by 9

but not 27. It follows that |CM12(g)| = 9, 18 or 36. By order considerations, |CM12(g)| = 36

because the other options give too many elements. Hence, there is one class of cycle type 34

containing 2640 elements.

There are 396 elements left. Let g be an element of cycle type 26. By considering the

centraliser of g in a Sylow 2-subgroup of M12, we immediately see that |CM12(g)| is not

divisible by 32. Moreover, |CM12(g)| is not divisible by 11, but is divisible by 3. Hence,

|CM12(g)| ≥ 240. Now, consider the Sylow 3-subgroup of CAlt(12)(g), it is isomorphic to C2
3 ,

but contains elements that fix more than 5 points. It follows that |CM12(g)| = 240.
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Chapter 8

The Character Tables of the Small

Mathieu Groups

In this chapter we will construct the character tables of M9, M10, M11 and M12. An inspection

of the character tables of M11 and M12 yields the following theorem.

Theorem 8.1. The groups M11 and M12 are simple.

Proof. By inspection of Table 8.3 we see that every character has trivial kernel. By Theo-

rem 4.22 the only normal subgroups of M11 are M11 and {1}. The same observation can be

seen from Table 8.4. Hence, the only normal subgroups of M12 are M12 and {1}.

8.1 The Character Table of M9 and M10

We shall begin with M9. By Theorem 7.9 we know M9 has 6 conjugacy classes and hence

6 irreducible characters. As C3 × C3 is normal in M9 and M9/(C3 × C3) ∼= Q8, we can lift

3 linear characters and a 2 dimensional character from Q8. The final character χ5 is given

by the 2-transitive action of M9 on 9 points (Theorem 4.37). The character table is given in

Table 8.1.

M9 19 24 33 42
A 42

B 42
C

χ0 1 1 1 1 1 1
χ1 1 1 1 −1 1 −1
χ2 1 1 1 1 −1 −1
χ3 1 1 1 −1 −1 1
χ4 2 −2 2 0 0 0
χ5 8 0 −1 0 0 0

Table 8.1: The character table of M9.
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Next, we will calculate the character table of M10. First note that M10 has 8 conjugacy

classes, hence 8 irreducible characters. Recall that Alt(6) / M10. So we can lift a character

from M10/Alt(6) ∼= C2.

M10 110 24 33 42
A 42

B 52 2181
A 2181

B

χ0 1 1 1 1 1 1 1 1

χ1 1 1 1 1 −1 1 −1 −1

We also have the permutation character χ2, given by the 3-transitive action of M10 on 10

points. Moreover, let χ3 = χ1χ2, then χ3 is also irreducible.

χ2 9 1 0 1 1 −1 −1 −1

χ3 9 1 0 1 −1 −1 1 1

We will try inducing characters from Alt(6). Let χ be a character of Alt(6); then using the

centraliser orders and Theorem 5.13 we have:

(χ ↑M10)(g) =


2χ(g) if g ∈ 110, 24, 42;

χ(gA) + χ(gB) if g ∈ 33, 52;

0 otherwise.

Let χ4 be the induced character of a 5 dimensional character of Alt(6) and let χ7 be the

induced character of an 8 dimensional character. We obtain the following:

χ4 10 2 1 -2 0 0 0 0

χ7 16 0 -2 0 0 1 0 0

As 〈χ4, χ4〉 = 1 and 〈χ7, χ7〉 = 1, we see that χ4 and χ7 are irreducible. As an element of

cycle type 2181 is not conjugate to its inverse, by Theorem 4.34 the remaining two characters

are complex conjugates with dimension d. Subtracting the squares of the known dimensions

from |M10| = 720, gives 200. Hence, 2d2 = 200, and d = 10. These two 10 dimensional

characters can now be easily calculated using the Schur Orthogonality Relations. Table 8.2

gives the full character table of M10.
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M10 110 24 33 42
A 42

B 52 2181
A 2181

B

χ0 1 1 1 1 1 1 1 1
χ1 1 1 1 1 −1 1 −1 −1
χ2 9 1 0 1 1 −1 −1 −1
χ3 9 1 0 1 −1 −1 1 1
χ4 10 2 1 −2 0 0 0 0
χ5 10 −2 1 0 0 0 ω ω
χ6 10 −2 1 0 0 0 ω ω
χ7 16 0 −2 0 0 1 0 0

Table 8.2: The character table of M10, where ω =
√
−2.

8.2 The Character Table of M11

8.2.1 The Permutation Character and Tensor Products

From the construction we see that M11 acts 4-transitively on a set of size 11. By considering

the number of fixed points of each conjugacy class we obtain a 10 dimensional irreducible

character χ1 (Theorem 4.37).

M11 111 24 33 42 52 213161 2181
A 2181

B 111
A 111

B

χ0 1 1 1 1 1 1 1 1 1 1

χ1 10 2 1 2 0 −1 0 0 −1 −1

Now, let χS and χA be the symmetric and antisymmetric decomposition of χ2
1.

χS 55 7 1 3 0 1 1 1 0 0

χA 45 -3 0 1 0 0 -1 -1 1 1

A quick calculation gives 〈χS, χS〉 = 3 and 〈χA, χA〉 = 1. Moreover, 〈χS, χ0〉 = 1 and

〈χS, χ1〉 = 1. Define χ8 = χA and χ7 = χS − χ0 − χ1 and note that 〈χ7, χ7〉 = 1. Hence we

have found 2 new irreducible characters of M11.

χ7 44 4 −1 0 −1 1 0 0 0 0

χ8 45 −3 0 1 0 0 −1 −1 1 1
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8.2.2 Induction from Alt(6)

We will now try inducing characters from the subgroup Alt(6). Let χ be a character of

Alt(6), then using the centraliser orders and Theorem 5.13 we have:

(χ ↑M11)(g) =



22χ(g) if g ∈ 111;

6χ(g) if g ∈ 24;

2χ(g) if g ∈ 42;

χ(gA) + χ(gB) if g ∈ 33, 52;

0 otherwise.

Let χX be the induced character of the trivial character of Alt(6) and let χY be the induced

character of a 5 dimensional character.

χX 22 6 4 2 2 0 0 0 0 0

χY 110 6 2 −2 0 0 0 0 0 0

We see that 〈χX , χX〉 = 3 and 〈χY , χY 〉 = 3. After taking the inner product of χX with

each of the known irreducible characters we find that 〈χX , χ0〉 = 1 and 〈χX , χ1〉 = 1. Let

χ4 = χX −χ0−χ1, then 〈χ4, χ4〉 = 1; hence χ4 is a new irreducible character. Repeating the

process with χY we obtain that 〈χY , χ4〉 = 1 and 〈χY , χ7〉 = 1. Now, let χ9 = χY − χ4 − χ7

then 〈χ9, χ9〉 = 1 and we have a new irreducible character.

χ4 11 3 2 −1 1 0 −1 −1 0 0

χ9 55 −1 1 −1 0 −1 1 1 0 0

8.2.3 Schur Orthogonality

The remaining four characters come in complex conjugate pairs. We can deduce this by

using the fact that elements of cycle type 2181 and 111 are not conjugate to their inverses

and applying Theorem 4.34. Given that each pair will have the same dimension, we can

attempt to calculate the dimension of these 4 remaining characters. Let the dimension of the

first pair be d1 and the dimension of the second pair be d2.

We have d2
1 +d2

1 +d2
2 +d2

2 = 712, hence d2
1 +d2

2 = 356. By an exhaustive search we find that

356 can be expressed as the sum of two squares in exactly one way, that is 356 = 102 + 162.

It immediately follows that d1 = 10 and d2 = 16.

Let χ2(1) = χ3(1) = 10 and χ5(1) = χ6(1) = 16. We will now use the column relations

to calculate the character values for the remaining conjugacy classes. We let the characters

take the following values:
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χ2 11 x1 x2 x3 x4 x5 x6 x6 x7 x7

χ3 11 x1 x2 x3 x4 x5 x6 x6 x7 x7

χ5 16 y1 y2 y3 y4 y5 y6 y6 y7 y7

χ6 16 y1 y2 y3 y4 y5 y6 y6 y7 y7

Substituting the column containing xi for i = 1, . . . 5 and the first column of the character

table into (4.4) we can obtain values for xi and yi. We shall demonstrate this with x1.

1 + 20 + 2× 10x1 + 33 + 2× 16y1 + 176− 135− 55 = 0

5x1 + 8y1 = −10 (8.1)

Substituting the column containing x1 into (4.4) twice gives:

1 + 4 + 2x2
1 + 9 + 2y2

1 + 16 + 9 + 1 = 48

x2
1 + y2

1 = 4 (8.2)

Solving (8.1) and (8.2), we obtain two solutions x1 = −2, y1 = 0 and x1 = 78
89
, y1 = −160

89
.

The second set of these cannot be expressed as sum of 2nd roots of unity. Hence, x1 = −2

and y1 = 0. Continuing in this manner we obtain:

χ2 10 −2 1 0 0 1 x6 x6 x7 x7

χ5 16 0 −2 0 1 0 y6 y6 y7 y7

The remaining values x6, x7, y6, and y7 can be calculated by repeat applications of the row

and column relations. We find that x6 =
√
−2, x7 = −1, y6 = 0 and y7 = 1

2
(−1 +

√
−11).

Table 8.3 shows the complete character table.

M11 111 24 33 42 52 213161 2181
A 2181

B 111
A 111

B

χ0 1 1 1 1 1 1 1 1 1 1
χ1 10 2 1 2 0 −1 0 0 −1 −1
χ2 10 −2 1 0 0 1 α α −1 −1
χ3 10 −2 1 0 0 1 α α −1 −1
χ4 11 3 2 −1 1 0 −1 −1 0 0
χ5 16 0 −2 0 1 0 0 0 β β
χ6 16 0 −2 0 1 0 0 0 β β
χ7 44 4 −1 0 −1 1 0 0 0 0
χ8 45 −3 0 1 0 0 −1 −1 1 1
χ9 55 −1 1 −1 0 −1 1 1 0 0

Table 8.3: The character table of M11, where α =
√
−2 and β = 1

2
(−1 +

√
−11).
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8.3 The Character Table of M12

We begin by noting that M12 has 15 conjugacy classes and 15 irreducible characters, one of

which is the trivial character χ0.

8.3.1 The Permutation Character and Tensor Products

By construction M12 acts 5-transitively on a set of size 12. Hence, by Theorem 4.37 get the

permutation character χ1.

M12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111
A 111

B

χ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ1 11 −1 3 2 −1 3 −1 1 0 −1 −1 1 −1 0 0

Now, let χS and χA be the symmetric and antisymmetric decompositin of χ2
1.

χS 66 10 6 3 0 6 2 1 1 0 2 0 1 0 0

χA 55 −1 −5 1 1 3 −1 0 −1 1 −1 1 0 0 0

A quick calculation gives 〈χS, χS〉 = 3 and 〈χA, χA〉 = 1. Moreover, 〈χS, χ0〉 = 1 and

〈χS, χ1〉 = 1. Define χ8 = χA and χ6 = χS − χ0 − χ1. We have found two new irreducible

characters of M12. Squaring these characters, however, is not a viable plan; the characters

obtained have dimensions 2916 and 3025.

χ6 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1

χ8 55 −1 −5 1 1 3 −1 0 −1 1 −1 1 0 0 0

8.3.2 Induction from M11

We will now try inducing characters from the subgroup M11. Let χ be a character of M11;

then using the centraliser orders and Theorem 5.13 we have:

(χ ↑M12)(g) =



12χ(g) if g ∈ 112;

4χ(g) if g ∈ 24, 42;

3χ(g) if g ∈ 33;

2χ(g) if g ∈ 52;

χ(g) if g ∈ 213161, 111
A, 111

B;

χ(gA) + χ(gB) if g ∈ 2181;

0 otherwise.
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Inducing the trivial character of M11 gives a character equal to χ0 +χ1. Inducing the integer

valued 10-dimensional character gives a character equal to χ1 + χ6 + χ8. Now, let χ12 be

the induced character of a complex valued 10-dimensional character of M11. We see that

〈χ12, χ12〉 = 1, therefore, χ12 is irreducible.

Let χV be the character obtained by inducing the 55-dimensional character of M11.

Finally, let χB be the induced complex valued 16-dimensional character of M11 and let

ω = 1
2
(−1 +

√
−11), then we have:

χ12 120 −8 0 3 0 0 0 0 0 1 0 0 0 −1 −1

χV 660 −4 0 3 0 0 −4 0 0 −1 2 0 0 0 0

χB 192 0 0 −6 0 0 0 2 0 0 0 0 0 ω ω

Note that 〈χB, χB〉 = 2 and 〈χV , χV 〉 = 6, but the inner product of χB with any known

irreducible is 0. We have χV , χ12 = 1, but the inner product is 0 for any other known

irreducibles. These do not give us any new irreducible characters, but we will use these

characters later.

8.3.3 Restriction from Sym(12)

Using the Frobenius character formula, it is possible to construct low dimensional characters

of Sym(12) evaluated over the conjugacy classes of M12; we will not detail this because it is a

time consuming and repetitive process. We note that (χ(11,1) ↓ M12) = χ1, (χ(10,2) ↓ M12) =

χ2 and (χ(10,1,1) ↓M12) = χ3. For ease of notation let λA = (9, 1, 1, 1) and λB = (8, 1, 1, 1, 1).

We can then construct the following characters of M12.

M12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111
A 111

B

χ(9,3) 154 10 −6 1 4 −2 −2 −1 1 0 0 0 −1 0 0

χλA 165 −11 5 3 3 1 1 0 1 −1 −1 −1 0 0 0

χ(8,4) 275 11 15 5 −4 −1 3 0 −1 0 −1 1 0 0 0

χ(7,5) 297 9 −15 0 0 5 −3 2 0 0 −1 −1 0 0 0

χ(3,2,1) 320 0 0 −4 −4 0 0 0 0 0 0 0 0 1 1

χλB 330 −6 10 6 −3 −2 −2 0 1 0 0 0 0 0 0

We first check the inner product of each character with itself and then with each of the

known irreducibles. We find that the 〈χλA , χλA〉 = 2 and 〈χλA , χ12〉 = 1, define χ5 = χλA−χ12

and note that 〈χ5, χ5〉 = 1. Hence, we have found a new irreducible character of M12.

χ5 45 −3 5 0 3 1 1 0 0 −1 −1 −1 0 1 1
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We shall next check χλB , we find that 〈χλB , χλB〉 = 3 and that 〈χλB , χ12〉 = 1. Define

χX = χλB − χ12. We will also look at χ(8,4). We find that 〈χ(8,4), χ(8,4)〉 = 4 and that

〈χ(8,4), χ6〉 = 1, define χY = χ(8,4) − χ6. Checking the inner products of χX and χY with

themselves and each other we obtain 〈χX , χX〉 = 2, 〈χY , χY 〉 = 3 and 〈χX , χY 〉 = 2. Define

χ2 = χY − χX , we find that 〈χ2, χ2〉 = 1; we have found a new irreducible character of M12.

χY 221 5 9 5 −4 −3 1 1 −1 0 −1 1 −1 1 1

χX 210 2 10 3 −3 −2 −2 0 1 −1 0 0 0 1 1

χ2 11 3 −1 2 −1 −1 3 1 0 −1 −1 1 −1 0 0

Let χS and χ9 be the symmetric and antisymmetric decomposition of χ2
2. We find that

χS = χ0 + χ2 + χ6 and χ9 is a new irreducible.

χ9 55 −1 −5 1 1 3 −1 0 −1 1 1 −1 0 0 0

We will now check the inner product of every restricted character and χV with the known

irreducible characters of M12.

Induced Character χ0 χ1 χ2 χ5 χ6 χ8 χ9 χ12

χ(9,3) 0 0 0 0 0 0 0 0

χλA 0 0 0 1 0 0 0 1

χ(8,4) 0 0 1 0 1 0 0 0

χ(7,5) 0 1 0 0 1 0 0 0

χ(3,2,1) 0 0 0 0 0 0 0 0

χλB 0 0 0 0 0 0 0 1

χV 0 0 0 1 0 0 0 1

Define the following characters:

χC = χ(9,3)

χD = χ(7,5) − χ1 − χ6

χE = χ(3,2,1)

χF = χλB − χ12

χW = χV − χ5 − χ12

The values of these are as follows.
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M12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111
A 111

B

χC 154 10 −6 1 4 −2 −2 −1 1 0 0 0 −1 0 0

χD 231 7 −9 −1 0 −1 −1 1 1 0 −1 −1 1 0 0

χE 320 0 0 −4 −4 0 0 0 0 0 0 0 0 1 1

χF 210 2 10 3 −3 −2 −2 0 1 −1 0 0 0 1 1

χW 485 5 5 −1 −1 −3 −3 0 −1 −1 1 1 0 1 1

Taking the inner products of each of these new characters with each other gives the

following:

χC χD χE χF χW

χC 2 1 0 0 1

χD 1 2 1 1 1

χE 0 1 2 1 2

χF 0 1 1 2 2

χW 1 1 2 2 4

Observe that χV has one constituent character in common with both χC and χD. More-

over, χC and χD have one constituent in common with each other. There are two possibilities,

either χV , χC and χD have exactly one constituent in common, or there are no constituent

characters in common to all three of them. Also note that the constituents of χE and χF are

constituents of χW .

Let χU = χC + χD + χE + χF and let χZ = χU − χW . Now, if χV , χC and χD have no

irreducible characters in common to all three of them, then 1
2
χZ will be irreducible.

We can deduce that they have no irreducible characters in common to all three of them

by considering that χD and χE have one irreducible character in common, but χC and χE

do not. Therefore, the constituent that χC and χW have in common cannot be the same as

the constituent χD, χE and χW have in common.

χU 595 19 −5 1 1 −5 −5 0 1 1 −1 −1 0 1 1

χW 485 5 5 −1 −1 −3 −3 0 −1 −1 1 1 0 1 1

χZ 110 14 −10 2 2 −2 −2 0 2 2 −2 −2 0 0 0
1
2
χZ 55 7 −5 1 1 −1 −1 0 1 1 −1 −1 0 0 0

We verify that 〈1
2
χZ ,

1
2
χZ〉 = 1. Let χ6 = 1

2
χZ , χ11 = χC − χ6, χ14 = χD − χ6, χ13 =

χE −χ14 and χ10 = χF −χ13. It can be verified using the inner product that all of these new

characters are irreducible. Now, recall χB. We find that 〈χB, χ14〉 = 1, define χ3 = χB−χ14.

Let χ4 be the complex conjugate of χ3, then we see that χ3 and χ4 are irreducible. The full

character table is given in Table 8.4.
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M12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111
A 111

B

χ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ1 11 3 −1 2 −1 3 −1 1 0 −1 1 −1 −1 0 0
χ2 11 3 −1 2 −1 −1 3 1 0 −1 −1 1 −1 0 0
χ3 16 0 4 −2 1 0 0 1 0 1 0 0 −1 ω ω
χ4 16 0 4 −2 1 0 0 1 0 1 0 0 −1 ω ω
χ5 45 −3 5 0 3 1 1 0 0 −1 −1 −1 0 1 1
χ6 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1
χ7 55 7 −5 1 1 −1 −1 0 1 1 −1 −1 0 0 0
χ8 55 −1 −5 1 1 −1 3 0 −1 1 −1 1 0 0 0
χ9 55 −1 −5 1 1 3 −1 0 −1 1 1 −1 0 0 0
χ10 66 2 6 3 0 −2 −2 1 −1 0 0 0 1 0 0
χ11 99 3 −1 0 3 −1 −1 −1 0 −1 1 1 −1 0 0
χ12 120 −8 0 3 0 0 0 0 1 0 0 0 0 −1 −1
χ13 144 0 4 0 −3 0 0 −1 0 1 0 0 −1 1 1
χ14 176 0 −4 −4 −1 0 0 1 0 −1 0 0 1 0 0

Table 8.4: The character table of M12, where ω = 1
2
(−1 +

√
−11).
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