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Abstract
A weakly sign symmetric P+

0,1-matrix is a weakly sign symmetric P+
0 -matrix

with positive diagonal entries. A digraph D is said to have weakly sign sym-

metric P+
0,1-matrix completion if every partial weakly sign symmetric P+

0,1-

matrix specifying D can be completed to a weakly sign symmetric P+
0,1-matrix.

Previous research has considered matrix completions for classes of matrices like P -

matrices, P0-matrices and P0,1-matrices and their subclasses with little attention

done on weakly sign symmetric P+
0,1-matrices. In this research, a graph theoretic

approach is used to achieve the necessary conditions for a digraph (or pattern)

to have weakly sign symmetric P+
0,1-matrix completion , classifying patterns as-

sociated with partial weakly sign symmetric P+
0 -matrices, partial weakly sign

symmetric P+
0,1-matrices and patterns having zero completion to a weakly sign

symmetric P+
0,1-matrices. The research will benefit computer engineers, statisti-

cians and scientists in solving molecular conformation problems. It is shown that

any asymmetric pattern associated with digraph of at most order 4 having weakly

sign symmetric P -completion also have zero completion to a weakly sign sym-

metric P+
0,1-matrix and patterns having weakly sign symmetric P+

0,1-completion

is completely classified for digraphs of at most order 3 and 192 out of 218 di-

graphs of order 4, the remaining patterns of order 4 are q = 4, n = 1 − 2;

q = 5, n = 1 − 5, 7, 17, 21; q = 6, n = 1, 3 − 8, 13, 15, 17, 19, 27, 38 − 39 and

q = 7, n = 2, 9. We, therefore, recommend for an investigation to the 26 unclas-

sified patterns, that is, to know whether they are having weakly sign symmetric

P+
0,1-completion or not having weakly sign symmetric P+

0,1-completion.
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Notations and Terminologies

di: Specified diagonal entry

aij: Specified non-diagonal entry

xij : Unspecified non-diagonal entry

cij : Value assigned to unspecified non-diagonal entry xij

A: n× n matrix

Ac: Completed matrix

detA: Determinant of A

N : Set of numbers {1, . . . , n}

Π: Class of matrices

A(α): Principal sub-matrix where α is a subset of N

detA(α): Determinant of a principal sub-matrix A(α)

G: Graph

D: Digraph

Q: Pattern of a matrix

p: Number of vertices of a digraph

q: Number of arc(s) of a digraph

q: Number of arc(s) of a digraph

wss : Weakly sign symmetric

ss : Sign symmetric
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Chapter 1

Introduction
This chapter presents a background of the study, definitions of terms used in

this study, statement of the problem, justification, study objectives and finally,

significance of the study.

1.1 Background of the Study

This section provides an overview concept of this study. Let us begin by briefly

explaining our intentions with this study. Full definitions of all terms will be

given in the next section.

A real n×n matrix A is a P -matrix (P0-matrix ) if, for each k ∈ {1, 2, . . . , n},

every k×k principal minor of A is positive(nonnegative). A weakly sign symmetric

P -matrix (weakly sign symmetric P0-matrix ) is a P -matrix (P0-matrix) such that

the product of aij and aji is nonnegative for all i < j.

A pattern Q has P -completion (resp. P0-completion) if every partial P -

matrix (resp. partial P0-matrix) which specifies the pattern can be completed to

a P -matrix (resp. P0-matrix) as stated in (DeAlba & Hogben, 2000) and (Choi,

DeAlba, Hogben, Maxwell, & Wangsness, 2002). The study we have just cited

investigated completion for the P and P0-classes of matrices.

The weakly sign symmetric property was later introduced in (DeAlba, Hardy,

Hogben, & Wangsness, 2003) to classes of P -matrices and P0-matrices giving rise

to two subclasses of weakly sign symmetric P -matrices and weakly sign symmetric

P0-matrices.

In 2015, a new class of matrices: P+
0,1-matrices was studied by (Sinha, 2017a).

Progressive research has been done on matrix completions for the this class. In

P+
0,1-matrices, the weakly sign symmetric case have not been considered hence it is
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impressive to have a study that examines weakly sign symmetric P+
0,1-completion.

This investigation can also be seen from another perspective: (DeAlba et

al., 2003) studied completions of patterns of partial weakly sign symmetric P0-

matrices and partial weakly sign symmetric P -matrices which are matrices with

properties that all principal minors are nonnegative and positive respectively.

The case where all principal minors are nonnegative and at least one is positive

in each order was not considered, these are the partial weakly sign symmetric

P+
0 -matrices. In some sense, the class of weakly sign symmetric P+

0 -matrices lies

half-way between the class of weakly sign symmetric P0-matrices, and the class of

weakly sign symmetric P0-matrices. Our aim it to use the above study to derive

a classification of patterns for weakly sign symmetric P+
0,1-matrices which is a

subclass of weakly sign symmetric P+
0 -matrix.

Our interest in this study is to understand when a partial weakly sign symmet-

ric P+
0,1-matrix can be completed. More precisely, we have investigated patterns

Q having the property that all partial weakly sign symmetric P+
0,1-matrices spec-

ified by pattern Q are completable. This problem have been addressed through

application of matrix completion techniques.

1.2 Definition of Terms

In this section we define the basic concepts in linear algebra, group theory and

graph theory that are commonly used and are fundamental in matrix completion

problems.

The definition of terms related to classes of matrices are covered in §1.2.1;

partial matrices are covered in §1.2.2; graphs, digraphs and patterns are covered

in §1.2.3; and matrix completion is covered in §1.2.4.

1.2.1 Classes of matrices

In this subsection we define a large number of different classes of matrices. The

formal definitions are given first, however the reader may gain better under-

standing by jumping forward to Figure 1.1 which connects all of the different
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definitions, and gives an easy way to understand these definitions using five basic

properties.

Definition 1.2.1.

A matrix A is an ordered set of elements listed in a rectangular array, i.e., m× n

where m is the number of rows and n is the number of columns. A sub-matrix of a

matrix A is a smaller matrix obtained by deleting some row(s) and/or column(s)

from matrix A. A square matrix A is a matrix that has n rows and n columns

i.e., an n × n matrix. A diagonal matrix A is a matrix with all non-diagonal

elements as zero i.e., if i 6= j then aij = 0.

Definition 1.2.2.

For α a subset of {1, 2, ..., n}, the principal sub-matrix A(α) is obtained from

n×n matrix A by deleting all rows and columns not indexed by an element of α.

A principal minor of A is the determinant of a principal sub-matrix of A (Choi

et al., 2002).

The next definition gives different types of matrices with respect to the values

accepted by their principal minors, and this will give us the classes of matrices.

Definition 1.2.3.

A P -matrix (P0-matrix ) is a matrix in which every principal minor of the matrix

is positive (nonnegative) (Choi et al., 2002). A P0,1-matrix is a P0-matrix for

which all diagonal entries are positive (Choi et al., 2003). A real n × n matrix

A is a P+
0 -matrix if for each k ∈{1,2,. . . ,n}, every k × k principal minor of A is

nonnegative and at least one k×k principal minor is positive. A P+
0 -matrix with

positive diagonal entries is called a P+
0,1-matrix as defined in (Sarma & Sinha,

2015a) and (Sinha, 2017a).

For more understating of the matrices defined above, we give Example 1.2.4

for elaboration.
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Example 1.2.4.

Consider the following 2× 2 matrices.

A =

0 0

0 0

, B =

1 1

1 1

, C =

 0 1

−1 1

, D =

2 1

1 1


Matrices A, B, C and D are P0-matrices since every principal minor for each

matrix is nonnegative, and matrices B and D are P0,1-matrix.

Matrices C and D are P+
0 -matrices. Finally, observe that matrix D is the

only P -matrix and P+
0,1-matrix.

Apart form looking at the principal minors, it is also very important to con-

sider the types of entries which gives more restriction for each class of matrices,

this will give us different subclasses. The four restrictions are given in the next

definitions.

Definition 1.2.5.

A n× n matrix A = [aij] is a

i Weakly sign symmetric matrix if aijaji ≥ 0 for all i, j.

ii Sign symmetric matrix if aijaji > 0 or aij = aji = 0 for all i, j.

iii Nonnegative matrix if aij ≥ 0 for all i, j.

iv Positive matrix if aij > 0 for all i, j.

Using Definition 1.2.5, we have four different subclasses for each class that

we have defined in Definition 1.2.3. In this study, we have used the class of P+
0,1-

matrices to give the definitions for various subclasses after incorporating the four

restrictions, other classes we will summarize using Figure 1.1.

To make our definitions more simpler here, we will relate with the classes

of matrices that we have already defined instead of stating all other properties

that have been inherited by the new subclass. For our case here, we have used

P+
0,1-matrix.
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Definition 1.2.6.

A weakly sign symmetric P+
0,1-matrix is a P+

0,1-matrix whose product of twin en-

tries is nonnegative, that is aijaji ≥ 0 for all i and j. A sign symmetric P+
0,1-matrix

is a P+
0,1-matrix whose product of twin entries is positive or both zeros, that is

aijaji > 0 or aij = aji = 0 for all i and j. A nonnegative P+
0,1-matrix is a P+

0,1-

matrix whose entries are nonnegative i.e., aij ≥ 0 for all i and j. A positive

P+
0,1-matrix is a P+

0,1-matrix whose entries are positive i.e., aij > 0 for all i and j.

Example 1.2.7.

The matrix A =


6 −2 2

−3 4 1

0 2 2

 is a weakly sign symmetric P+
0,1-matrix but not a

sign symmetric P+
0,1-matrix.

First, all the diagonal entries are positive.

Second, we show that all principal minors are nonnegative and at least one in

each order is positive.

detA(1) = 6; detA(1, 2) = 18;

detA(2) = 4; detA(1, 3) = 12;

detA(2) = 2; detA(2, 3) = 6;

detA = 12.

The calculations shows that A is P+
0,1-matrix, satisfying conditions of the prin-

cipal minors.

Now since aijaji ≥ 0 for all i and j then A is a weakly sign symmetric P+
0,1-

matrix and it is not a sign symmetric P+
0,1-matrix because a13 = 2 6= a31 = 0.

It is also clear that A is neither a nonnegative P+
0,1-matrix nor a positive

P+
0,1-matrix due to existence of negative entries in the matrix.

The matrix definitions that we have encountered so far are summarized in

Figure 1.1.
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n× n matrix A

P0

wssP0

P+
0

P0,1

wssP+
0

P

P+
0,1

wssP0,1

wssP+
0,1

wssP

(a)

(e)

(c)

(c)

(e)

(d)
(e)

(b)

(e)
(c)

(b)

(c) (e)
(d)

(d)

(b)

(b)

Figure 1.1: Different classes of matrices and their defining properties

The nodes of the figure correspond to different classes of matrices discussed

above, while the edge labels correspond to the following properties for an n-by-n

matrix A:

(a) all principal minors of A are non-negative;

(b) all diagonal entries of A are positive;

(c) for all k = 1, . . . , n, at least one principal minor of A of order k is positive;

(d) all principal minors of A are positive;

(e) aijaji ≥ 0 for all i, j = 1, . . . , n.

To understand the diagram, an example will suffice. A matrix is weakly sign

symmetric (wss) P+
0,1 if it satisfies all of the conditions on a path from the top of

the diagram to the node wssP+
0,1. There are 6 paths to this node with labels:
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1. (a), (b), (e), (c); 4. (a), (c), (e), (b);

2. (a), (b), (c), (e); 5. (a), (e), (b), (c);

3. (a), (c), (b), (e); 6. (a), (e), (c), (b).

The 6 sets of conditions are entirely equivalent and either suffices to define this

class of matrices.

The diagram also makes it clear which classes of matrices contain which others:

for instance, the class of P+
0 -matrices contain the class of P -matrices because the

node P+
0 occurs along a path to node P .

The diamond node correspond to the matrix–class that we are interested in

this research.

Note that for the other three cases of entries affects only the last path (e)

when we replace nodes with wss in Figure 1.1 as follows:

1. If sign symmetric(ss) then set (e) to aijaji > 0 or aij = aji = 0 for all

i, j = 1, . . . , n.

2. If nonnegative then set (e) to aij ≥ 0 for all i, j = 1, . . . , n.

3. If positive then set (e) to aij > 0 for all i, j = 1, . . . , n.

These replacement completes definitions of various classes of P -matrices.

All through we have been defining matrices with all entries specified, in the

next subsection we will be defining matrices with some unspecified entries.

1.2.2 Partial matrices

In this subsection we define partial matrices for various different classes of matrix.

Definition 1.2.8.

A partial matrix is a matrix in which some entries are specified while others are

free to be chosen from a certain set (DeAlba, Hogben, & Sarma, 2009).

We wish to extend this definition to deal with certain classes of matrices.

Roughly speaking, given a class of matrices Π such as P0-matrices, nonnegative
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P0-matrices, weakly sign symmetric P+
0 -matrices and so on, a partial Π-matrix is

one whose specified entries satisfy the required properties of a Π-matrix.

Let us make this precise for three important classes of matrices:

Definition 1.2.9.

1. A partial weakly sign symmetric P0-matrix is a partial matrix A such that

the determinants of all fully specified principal sub-matrices are nonnegative

and aijaji ≥ 0 for all specified entries (DeAlba et al., 2003).

2. A partial P+
0 -matrix is a partial matrix A in which all fully specified princi-

pal minors are nonnegative and Sk(A) > 0 for every k ∈ {1, 2, ..., n}, when-

ever all k × k principal sub-matrices are fully specified (Sarma & Sinha,

2015a).

3. A partial weakly sign symmetric P+
0 -matrix is a partial P+

0 -matrix whose

products of specified twin entries are nonnegative and a partial weakly sign

symmetric P+
0,1-matrix is a partial weakly sign symmetric P+

0 -matrix with

positive diagonal entries.

The example below illustrates much about partial matrices.

Example 1.2.10.

The real matrix A =


3 1 −2

3 2 x

−1 y 4

 is a partial weakly sign symmetric P+
0 -matrix

since the determinants of all fully specified principal sub-matrices are nonnegative

and aijaji ≥ 0 for all specified entries. It is also a partial weakly sign symmetric

P+
0,1-matrix since all diagonal entries are positive.

By the fact that weakly sign symmetric P+
0 -matrix carries more restrictions than

both weakly sign symmetric P0-matrix and P+
0 -matrix then matrix A is weakly

sign symmetric P0-matrix and P+
0 -matrix.

It is clear from (3) of Definition 1.2.9 that the classes of partial weakly sign

symmetric P+
0,1-matrices splits into three cases:
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1. At least one diagonal entries is unspecified;

2. All diagonal entries are specified, and at least one non-diagonal entry is

unspecified;

3. All entries of A are specified.

Example 1.2.10 gives the second case of the partial weakly sign symmetric

P+
0,1-matrices.

Our study focused on the second and third case, where all the diagonal entries

are specified and this is because we have used patterns associated with digraphs,

more information has been given in the next subsection.

Later, we represented entry positions of matrices using digraphs (or patterns)

and hence the next subsection on digraphs and patterns.

1.2.3 Graphs, digraphs and patterns

In this subsection we define graph and pattern terminologies which are important

in matrix completion.

Definition 1.2.11.

A graph G = (VG, EG) is a finite non-empty set of positive integers VG, whose

members are called vertices and a set, EG, of (unordered) pairs {u,v} of vertices

called the edges of G. Given a graph G = (VG, EG) then a graph H = (VH , EH)

is a subgraph of graph G if VH is a subset of VG and EH is a subset of EG. A

graph whose edge-set is empty is a null graph.

The graph definition here differs from standard use in that we require vertices

to be positive integers (since we will be using them to represent matrices) as

defined in (Hogben, 2001). An example of a graph and a subgraph is given in

Figure 1.2.
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1

2 3

4 1

2 3

4

Graph D Subgraph H

Figure 1.2: Graph D and a subgraph H

Definition 1.2.12.

A digraph D = (VD, ED) is a finite non-empty set of positive integers VD, whose

members are called vertices and a set, ED, of (ordered) pairs (u,v) of vertices

called the arc of D. Given an arc x = (u, v), the vertex u is called the initial

vertex (tail); v is the terminal vertex (head); and we say that x is adjacent to u

and v, or equivalently, we say that u is adjacent to v. An arc joining a vertex

to itself is called a loop i.e. x = (v, u) and v = u. A digraph H = (VH , EH) is a

sub-digraph of digraph D if VH ⊆ VD and EH ⊆ ED (Harary, 1969). An example

of a digraph is given in Figure 1.3; it has an arc (1,2) with initial vertex 1 and

terminal vertex 2.

1

2 3

4

Figure 1.3: Digraph of order 4 and 3 arcs

Note that the underlying graph G of a digraph D is the graph obtained by

replacing each arc (i, j) or pair of arcs (i, j) and (j, i) if both are present by the

one edge {i, j}. Arc (i, j) (or arcs (i, j) and (j, i) if both are present) of D and

edge {i, j} of G are said to correspond.

There are two important types of sub-digraphs and are given below.
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Definition 1.2.13.

Let D be a digraph, then

1. The sub-digraph H is an induced sub-digraph (induced by VH) if, for every

u, v ∈ VH such that the arc (u, v) ∈ ED, we have (u, v) ∈ EH . If v is a

vertex of D, we write D − v for the subgraph induced by DD \ {v}.

2. The sub-digraph H is a spanning sub-digraph if VH=VD, i.e. only arcs are

deleted.

Definition 1.2.14.

The order of a digraph D, denoted by |D|, is the number of vertices of D. A

digraph is complete if it includes all possible arcs between its vertices, and is

denoted by Kn, where n is the number of vertices. A complete (di)graph is called

a clique.

The order of the digraph in Figure 1.3 is 4.

Definition 1.2.15.

A path P in a digraph D = (VD, ED) is a sub-digraph of (VP , EP ) where VP =

{v1, . . . , vk} and EP = {(v1, v2), (v2, v3), . . . , (vk−1, vk)}.

In this case the length of P is k − 1, and we represent P as follows: v1 →

v2 → ... → vk. A cycle C in a digraph D = (VD, ED) is a sub-digraph (VC , EC)

where VC = {v1, . . . , vk} and EC = {(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1)}. in

this case the length of C is k and we call C a k-cycle.

The digraph in Figure 1.3 contains one path of length 2: 1 → 2 → 3 and

contains no cycles.

Definition 1.2.16.

A homomorphism between two digraphs maps vertices to vertices, arcs to arcs

while preserving the incidence relation. More precisely, a homomorphism φ be-

tween the digraph D and the digraph D
′

is a mapping φ : VD ∪ED → VD′ ∪ED′

such that for each arc a ∈ ED, φ(s(a)) = i(φ(a)) and φ(t(a)) = t(φ(a)) where i
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and t are maps that assigns to each arc two elements of D: the initial vertex and

the terminal vertex. A homomorphism φ : D −→ D
′

is an isomorphism if the

homomorphism is bijective (Keidar, 2009).

Note that a digraphD = (VD, ED) is isomorphic to the digraphD
′
= (VD′ , ED′ )

if there is a bijection map φ :VD → VD′ such that (v, w) ∈ ED if and only if

(φ(v), φ(w)) ∈ ED′ .

1

2 3

4 1

2 3

4

Digraph D Digraph D
′

Figure 1.4: Digraph D and an isomorphic digraph D
′

Consider digraph D and digraph D
′

in Figure 1.4 and a bijection map φ :VD

→ VD′ given by v1 → v4, v2 → v1, v3 → v2 and v4 → v3 then observe that

(vi, vj) ∈ ED if and only if (φ(vi), φ(vj) ∈ E
′
D.

Definition 1.2.17.

A pattern Q for n×n partial matrices is a list of positions of the n×n matrix, that

is subset of {1,...,n} × {1,...,n} that includes all diagonal positions. A symmetric

pattern is a pattern with the property that (i, j) is in the pattern if and only if

(j, i) is in the pattern. An asymmetric pattern is a pattern with the property that

(i, j) is in the pattern, then (j, i) is not in the pattern. A partial matrix specifies

a pattern if its specified entries lie exactly in those positions listed in the pattern

(Choi et al., 2003).

We emphasize that in this research, all patterns contain diagonal entries since

we will be using digraphs with specified vertices; and for that reason we have

considered partial matrices with specified diagonal entries.
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It is important to note that patterns and digraphs are interchangeable as

illustrated in Example 1.2.18.

Example 1.2.18.

The 3× 3 pattern Q = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 3)} is specified by the

partial matrix A =


d1 a12 a13

x21 d2 x23

a31 x32 d3

.

Note that the pattern Q is neither a symmetric pattern nor an asymmetric

pattern. Pattern Q is represented as a digraph of 3 vertices and 3 arcs given by

Figure 1.5.

1

2

3

Figure 1.5: Digraph of order 3 and 3 arcs

Definition 1.2.19.

A pattern Q is permutation similar to a pattern R if there is a permutation φ of

{1,...,n} such that R = {((φ(i), φ(j)) : (i, j) ∈ Q}.

Relabeling the vertices of a digraph diagram, which performs a digraph iso-

morphism, corresponds to performing a permutation similarity on the pattern

(Hogben, 2003a), and since subclasses of P+
0,1-matrices are closed under permuta-

tion similarity, then we require only to determine completions of non-isomorphic

digraphs.

We have already given definitions of partial matrices and also digraphs, now

in the next subsection we will define how to complete those partial matrices.

1.2.4 Matrix completion

In this subsection we give some definitions on matrix completion and later give

the between completion of a partial matrix and a pattern (or a digraph).
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Definition 1.2.20.

A completion of a partial matrix is a specific choice of values for the unspecified

entries (Choi et al., 2003). Completion of a partial matrix is called zero completion

if all the unspecified entries in the partial matrix are equated to zeros.

Definition 1.2.21.

A pattern has weakly sign symmetric P+
0,1-completion if every partial weakly sign

symmetric P+
0,1-matrix that specifies the pattern can be completed to a weakly

sign symmetric P+
0,1-matrix.

In general, a pattern (or its (di)graph) has Π-completion if every partial Π-

matrix which specifies the pattern can be completed to a Π-matrix.

Definition 1.2.22.

A pattern has zero completion to a weakly sign symmetric P+
0,1-matrix if every

partial weakly sign symmetric P+
0,1-matrix that specifies the pattern can be com-

pleted to a weakly sign symmetric P+
0 -matrix by assigning all unspecified entries

to zeros.

We wish to differentiate completion of a partial matrix and a pattern using

Example 1.2.23 and Example 1.2.24.

Example 1.2.23.

The partial weakly sign symmetric P+
0,1-matrix A =


3 2 −3

1 4 x23

−2 −1 2

 specifies

pattern Q = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}.

The determinants of all fully specified principal sub-matrix are nonnegative

and aijaji ≥ 0 for all specified entries.

Note that it is not a require for a partial matrix with at least one unspecified

entry to have a positive principal minor.

If we analyze the principal sub-matrices of A(2, 3), the entry x23 must be

negative so that the condition aijaji ≥ 0 is satisfied.
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The determinant of A i.e., detA = 3(8 + x23) − 2(2 + 2x23) − 3(−1 + 8) =

24 + 3x23− 4− 4x23− 21 = −1− x23 > 0; this implies that x23 < −1 because the

determinant needs to be positive.

The determinant of sub-matrix A(2, 3) is given by detA(2, 3) = 8 + x23 ≥ 0

implying that x23 ≥ −8. (At least A(1, 2) is positive.

The intersection of the two sets is−8 ≤ x23 < −1 which satisfies the conditions

of a weakly sign symmetric P+
0,1-matrix. Hence the above partial weakly sign

symmetric P+
0,1-matrix can be completed to has weakly sign symmetric P+

0,1-matrix

by set −8 ≤ x23 < −1.

Now the fact that, the partial matrix has been completed to weakly sign sym-

metric P+
0,1-matrix does not mean that the pattern Q has weakly sign symmetric

P+
0,1-completion.

In that case we give an example to show that the pattern Q does not have

weakly sign symmetric P+
0 -completion.

Example 1.2.24.

The partial weakly sign symmetric P+
0 -matrix A =


1 1 −3

1 1 x23

0 0 2

 specifies pattern

Q = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}.

The determinant of matrix A is zero, i.e., detA = 0 for any choice of x23; therefore

it can not be completed to a weakly sign symmetric P+
0 -matrix. Hence pattern

Q does not have weakly sign symmetric P+
0 -completion.

Note that, completion of digraphs (or pattern) is more powerful since it consid-

ers the completion of every partial matrix specifying the pattern. The existence

of a partial matrix that can not be completed causes lack of completion of a

pattern.
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1.3 Statement of the Problem

There has been a lot of research on the matrix completion problems for patterns

with respect to several classes of matrices; we mention in particular, P -matrices

(Bowers et al., 2006), P0-matrices (Choi et al., 2002), P0,1-matrices (Wangsness,

2005), P+
0 -matrices (Sarma & Sinha, 2015a) and P+

0,1-matrices (Sarma & Sinha,

2015a).

The subclasses of P0-matrices and P -matrices were later researched, these

are nonnegative P0-matrices in (Choi et al., 2003) and (weakly) sign symmetric

P -matrices in (DeAlba et al., 2003). At the least, in all these research works,

digraphs of up to 4 vertices were considered.

In this study we investigated matrix completion of weakly sign symmetric

P+
0,1-matrices. A major difficulty with these classes of matrix is that they lack

the so-called “hereditary property”, i.e., a matrix A can belong to one of these

classes, while one of its principal sub-matrices does not. This makes the analysis

much harder. Many of the classes listed above – for example the P -matrices, P0-

matrices and P0,1-matrices and their subclasses considering the entries do have

this property and so the analysis of matrix completion here is more straightfor-

ward.

By the way, referring to Figure 1.1, we see that the node wssP+
0,1 is sandwiched

between nodes wssP0,1 and wssP – these latter nodes correspond to classes that

have the hereditary property, while the former does not. It is not always imme-

diately clear which classes possess the hereditary property.

Nonetheless, some of the classes listed above also lack the hereditary property.

In particular, we mention the class of P+
0 -matrices and the class of P+

0,1-matrices;

these have been studied by (Sarma & Sinha, 2015a) and (Sinha, 2017a), respec-

tively. We make use of the analysis in these references to inform our own analysis

of the two new classes.

Indeed, we go further: in (Wangsness, 2005), Wangsness investigated the com-

pletion problem for weakly sign symmetric P0,1-matrices using the investigation



17

for weakly sign symmetric P -matrices and weakly sign symmetric P0-matrices

found in (DeAlba et al., 2003). Similarly, this study on completion problem for

weakly sign symmetric P+
0,1-matrices makes use of the investigations on weakly

sign symmetric P -matrices found in (DeAlba et al., 2003).

1.4 Justification of the Study

Situations arise when a full set of data is not available or is not economical

to collect. With the knowledge that the complete data set must have certain

properties when arranged in a matrix, the values of the unavailable data can be

suggested.

According to Hogben (Hogben, 2001), extensive research has been done on

matrix completion for classes including P -matrices, P0-matrices, nonnegative

P -matrices, (weakly) sign symmetric P -matrices, (weakly) sign symmetric P0-

matrices and most recently, Sarma researched on P+
0 -matrices in (Sarma & Sinha,

2015a) and and Sinha researched on P+
0,1-matrices in (Sinha, 2017a), matrix com-

pletion research regarding various classes of P+
0,1-matrices has not been done,

hence the research on weakly sign symmetric P+
0,1-matrices, was necessary.

1.5 Objective of the Study

In this section we have given both general and specific objectives of this research.

1.5.1 General Objective

Our objectives concern the matrix completion problem for the class of weakly

sign symmetric P+
0,1-matrices.

1.5.2 Specific Objectives

The specific objectives of this study were to:-

(i) Determine the necessary conditions for a digraph (or pattern) to have weakly

sign symmetric P+
0,1-matrix completion.

The results of this objective is presented in Section §4.1.
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(ii) Determine the relationship between weakly sign symmetric P+
0,1-completion

and other classes of weakly sign symmetric P -matrix.

The results of this objective is presented in Section §4.2.

(iii) Characterize patterns associated with digraphs of order at most 4 having

weakly sign symmetric P+
0,1-completion.

The results of this objective is presented in Section §4.3.

(iv) Single out patterns associated with digraphs of order at most 4 having zero

completion to a weakly sign symmetric P+
0,1-matrices.

The results of this objective is presented in Section §4.4.

1.6 Significance of the Study

Work on matrix completion can be applied in many areas where some information

is known but other information is not available and it is known that the full data

matrix must have certain properties.

Some of the areas where matrix completion is useful include computer engi-

neering problems such as data transmission, coding, decompression and image

enhancement, system theory, discrete optimization (relaxation method), statisti-

cal problems like the entropy method for missing data, chemistry problems like

molecular conformation problems, operator theory, and also in geophysical prob-

lems like in seismic reconstruction problems as discussed in (Lee & Seol, 2001)

and (Choi et al., 2003).

For instance, when an image file is transmitted across the internet, it is de-

scribed as a matrix of hexadecimal entries each encoding the color to a particular

pixel in the image. If this file is corrupted during transmission, then one may be

left with a partial matrix which must be completed if the image is to be recov-

ered. By placing restrictions on the form of the image matrices, using principle

of coding theory, it is possible to perform this matrix completion efficiency and

effectively.
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Our work fits into the theoretical literature for this work of practical problem.
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Chapter 2

Literature review
This chapter examines and acknowledges the contributions of other researchers

and scholars on matrix completion. This is done through the review of books,

journals, research work and electronic sources. Matrix completion form a major

area of interest for mathematicians in abstract algebra.

Throughout this chapter and the next chapters, digraphs will be denoted as

Dp(q, n) where p denotes the number of vertices, q denotes the number of arcs and

n denotes the diagram number given in (Harary, 1969). The serial number n is

important in distinguishing non-isomorphic digraphs having the same number of

vertices and arcs. Recall that, we write weakly sign symmetric and sign symmetric

in short form as wss and ss respectively, e.g. wssP+
0 -matrix instead of weakly

sign symmetric P+
0 -matrix.

We will give available literature of related works for the previous studies on

completions for various classes of P -matrices, their relationships and finally close

the chapter by identifying the gaps in the literature which will be addressed in

this research, and are organized as follows:

Section §2.1: Completions for various classes of P -matrices.

Section §2.2: Relationship between various matrix completion.

Section §2.3: Gaps in the literature.

2.1 Completions for various classes of P -matrices

In this section we have given some results on completions for various classes of

P -matrices which are organized as shown in Figure 2.1.
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Section 2.1: Completions for various classes of P -matrices

Subsection 2.1.1: P -matrices

Subsection 2.1.2: P0-matrices

Subsection 2.1.3: P0,1-matrices Subsection 2.1.4: P+
0 -matrices

Subsection 2.1.5: P+
0,1-matrices

All principal minors are positive

All principal minors are nonnegative

All diagonal entries
are positive

For all k = 1, . . . , n, at least
one principal minor of

order k is positive

For all k = 1, . . . , n,
at least one principal
minor of order k is positive

All diagonal entries
are positive

Figure 2.1: Completions for various classes of P -matrices

The path linking various classes is accompanied by a short description of the

additional property leading to the formation of new class. It also shows the flow

of informations in the literature.

In each of the subsections, we will consider 5 subclasses of the respective class,

that is, π-matrices, wss π-matrices, ss π-matrices, nonnegative π-matrices and

positive π-matrices where π is a class of P , P0, P0,1, P
+
0 and P+

0,1.

The first class to be reviewed in the subsection below is the class of P -matrices,

recall that P -matrix is a matrix in which every principal minor is positive.

2.1.1 P -matrix completion

The study of P -matrix completion was first introduced by Johnson and Kroschel,

they studied combinatorially symmetric P -matrix completion (Johnson & Kroschel,

1996). It was proved first, that any symmetric pattern that contains the diagonal

entries has P -completion although this does not hold for P0-completion; second,

all 3×3 patterns have P -completion; third, showed that for every n×n partial P -

matrix with exactly one unspecified entry and n ≥ 4, there is a partial P -matrix
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that lacks P -matrix completion.

DeAlba and Hogben researched on “completion of P -matrix patterns” in

(DeAlba & Hogben, 2000); this is an extension of the work of Johnson and

Kroschel. They classified digraphs of order 4 and it was found, q = 1− 8, 12, q =

9, n = 1, 2, 8, 11; q = 10, n = 1 have P -completion and q = 9, n = 3; q = 10, n = 5

and q = 11 do not have P -completion. The classification was not complete since

there were 11 unclassified patterns which include q = 9, n = 4− 7, 9, 10, 12, 13.

The classification of digraphs of order less than or equal to 4 regarding (weakly)

sign symmetric P -completion was done in (DeAlba et al., 2003). They found that,

first, all digraphs of order 1 and 2 have (weakly) sign symmetric P -completion;

second, digraph of order 3 has (weakly) sign symmetric P0-completion if and only

if its digraph does not contain a 3-cycle or is complete; and third, digraph of

order 4 has (weakly) sign symmetric P -completion if and only if its digraph is

one of the following.

q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1− 5;

q = 3, n = 1− 11, 13;

q = 4, n = 1− 12, 14− 19, 21− 23, 25− 27;

q = 5, n = 1− 5, 7− 10, 14− 17, 21− 24, 26− 29, 31, 33− 34, 36− 37

q = 6, n = 1− 8, 13, 15, 17, 19, 23, 26− 27, 32, 35, 38− 40, 43, 46;

q = 7, n = 2, 4− 5, 9, 14, 24, 29, 34, 36;

q = 8, n = 1, 10, 12, 18;

q = 9, n = 8, 11;

q = 12, n = 1.

Nonnegative P -completion and positive P -completion was first considered in
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(Fallat, Johnson, Torregrosa, & Urbano, 2000), it was shown that the all digraphs

of order 1, 2 and 3 have nonnegative P -completion and positive P -completion,

and later in (Bowers et al., 2006), similar research was done for digraphs of order

4 and it was shown that the only digraphs of order 4 that do not have both

nonnegative P -completion and positive P -completion are:

q = 6, n = 45;

q = 7, n = 30, 32, 33, 35, 38;

q = 8, n = 16, 17, 19, 20, 22− 26;

q = 9, n = 3− 7, 9, 10, 12, 13;

q = 10, n = 1− 5;

q = 11, n = 1.

All the 5 cases have been studied under this class P -matrices.

The second class to be reviewed in the subsection below is the class of P -

matrices, recall that P0-matrix is a matrix in which every principal minor is

nonnegative, the difference from the class we have reviewed above is that it accepts

zero as the principal minors (new property from the previous class of P -matrices).

2.1.2 P0-matrix completion

The P0-matrix completion problem was investigated in (Choi et al., 2002) and it

was established that every asymmetric pattern has P0-completion, all digraphs of

order 1, 2 and 3 except D3(4, 2) and D3(5, 1) have P0-completion. Furthermore,

they characterized digraphs of order 4. It was shown that if a digraph of order 4
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is listed below, then it has P0-completion.

q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1− 5;

q = 3, n = 1− 13;

q = 4, n = 1− 12, 14− 27;

q = 5, n = 1− 5, 7− 10, 14− 17, 21− 38

q = 6, n = 1− 8, 13, 15, 17, 19, 23, 26− 27, 32, 35, 38− 40, 43, 45− 48;

q = 7, n = 2, 4− 5, 9, 14, 24, 29, 34, 36;

q = 8, n = 1, 10, 12, 18;

q = 9, n = 8, 11;

q = 12, n = 1.

On the weakly sign symmetric P0-completion, it was shown in (DeAlba et al.,

2003), that all patterns weakly sign symmetric P -completion except q = 4, n =

16; q = 5, n = 7; q = 6, n = 4, 7; q = 7, n = 2 also have weakly sign symmetric

P0-completion for digraphs of at most order 4.

The nonnegative P0-matrix completion problem was studied in (Choi et al.,

2003). The study showed that all digraphs of order 1, 2 and 3 have nonnegative

P0-completion. They also examined digraphs of order 4 and found that those

which do not have nonnegative P0-completion are those digraphs that do not have

nonnegative P -completion with additional digraphs q = 4, n = 16; q = 5, n =

7, 32; q = 6, n = 4, 7, 22, 33, 34, 37, 42; q = 7, n = 2, 8, 10, 12, 13, 18, 20, 20, 25, 27;

q = 8, n = 2− 5, 7− 9, 11, 13; q = 9, n = 1− 2.

Under this subclass of P0-matrices, only 3 cases out of 5 have been studied.

The cases that were not studied are for sign symmetric P0-matrices and positive

P0-matrices.
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The third class to be reviewed in the subsection below is the class of P0,1-

matrices. Recall that P0,1-matrix is a matrix in which every principal minor is

nonnegative and having positive diagonal entries (new property from the previous

class of P0-matrices).

2.1.3 P0,1-matrix completion

Matrix completion problems regarding various classes of P0,1-matrices was con-

sidered in the PhD thesis of Amy Lee Wangsness (Wangsness, 2005); the three

subclasses that were studied by Wangsness are P0,1-matrices, wssP0,1-matrices

and ssP0,1-matrices. Her objectives were to classify digraphs of at most order 4.

The relationships with other classes played a big role in her classifications. The

results where as follows: First, a pattern has P0,1-completion if and only if it is

given in the list below:

p = 1− 3;

p = 4; q = 0− 6, 12;

q = 7, n = 1− 29, 34, 36− 37;

q = 8, n = 1− 15, 18, 21, 27;

q = 9, n = 1− 2, 11;

q = 10, n = 1.

Secondly, she found that all patterns that have weakly sign symmetric P0,1-

completion are exactly those patterns that have weakly sign symmetric P -completion

which have already been shown in Subsection 2.1.1.

Finally, in her other objective, she found that the only patterns with ssP0,1-



26

completion are the ones listed below:

p = 1− 2;

p = 3; q = 0− 2;

q = 3, n = 1, 3− 4;

q = 4, n = 1;

p = 4; q = 0− 2, 12;

q = 3, n = 1− 11, 13;

q = 4, n = 1− 12, 16− 19, 21− 23, 25− 27;

q = 5, n = 1− 5, 7− 10, 26− 29, 31, 33− 34, 36− 37;

q = 6, n = 1− 3, 46;

q = 7, n = 4− 5;

q = 8, n = 1.

From the available literature, it is noticed in this subsection that we lack lit-

erature for the case of nonnegative P0,1-completion and positive P0,1-completion.

The next two classes under subsection 2.1.4 and 2.1.5 are closely related to

this study. They are different from the previous classes since hereditary property

is not obeyed here, that is, if a digraph has P+
0 -matrix completion, it is not

guarantee that its all sub-digraphs have P+
0 -matrix completion.

The fourth class to be reviewed in the subsection below is the class of P+
0 -

matrices. It can not link directly with the immediate previous class P0,1-matrices.

We subtract the condition that all diagonal entries and add the new property that

for all k = 1, . . . , n, at least one principal minor of order k is positive or we rather

link directly to class of P0-matrices (see, Figure 2.1).

2.1.4 P+
0 -matrix completion

The study on P+
0 -matrix completion problem was done in (Sarma & Sinha,

2015a). They first presented two necessary conditions for P+
0 -matrix completion.
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Secondly, they used the necessary conditions to give classifications of digraphs of

order at most 4. The patterns that have P+
0 -completion are listed below.

p = 1

p = 2; q = 0, 2;

p = 3; q = 0, 1, 6;

q = 2, n = 2;

p = 4; q = 0, 1, 12;

q = 2, n = 1− 5;

q = 3, n = 1− 7, 9, 10, 12, 13;

q = 4, n = 1− 9, 11, 16− 20, 22− 26;

q = 5, n = 1− 3, 7− 10, 25, 27, 30, 32, 33, 35, 38;

q = 6, n = 3− 5, 7;

p = 12; q = 1, n = 1.

Finally, they gave comparisons between P+
0 -completion and other classes.

The last class to be reviewed is the class of P+
0,1-matrices, it is related to the

class we have just reviewed above P+
0 -matrices. The additional property is that

all the diagonal entries need to be positive. One can also see the connections

with P0,1-matrices by considering extra condition that for all k = 1, . . . , n, at

least one principal minor of order k is positive. The class of P+
0,1-matrices can be

approached in two ways via P0,1-matrices or P+
0 -matrices as shown in Figure 2.1.

This research is in this class and is the class with highest number of conditions

compared to the set of classes that we have handled so far.

2.1.5 P+
0,1-matrix completion

The P+
0,1-matrix completion is the latest research to be studied out of all classes

reviewed in the previous subsections. Sinha considered P+
0,1-matrix completion
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(Sinha, 2017a). The study was targeting classification of digraphs having order

at most 4. He started his study by establishing necessary and some sufficient

conditions. The results by Sihna showed that digraphs listed below have P+
0,1-

matrix completion:

p = 1 q = 0, n = 1;

p = 2; q = 0, 2, n = 1;

p = 3; q = 0, 2, 3, n = 1;

q = 2, 3, n = 1− 4;

q = 4, n = 1, 2;

q = 6, n = 1;

p = 4; q = 0, 2, n = 1;

q = 2, n = 1− 5;

q = 4, n = 10, 12− 15;

q = 5, n = 4− 6, 11− 28;

q = 6, n = 1, 2, 6, 8, 8− 23, 26, 28− 30, 32− 35, 37, 41, 42;

q = 7, n = 1− 6, 8, 10, 14, 18, 24, 25, 27;

q = 8, n = 1, 2, 8, 11;

q = 12, n = 1.

The given conditions were not strong enough to classify digraphs completely.

Although most of the digraphs were classified, some remained unclassified. The

list of 45 unclassified digraphs is given below:

p = 4; q = 6, n = 24, 25, 27, 31, 36, 38− 40, 44;

q = 7, n = 7, 9, 11− 13, 15, 17, 19− 21, 23, 26, 28, 30− 33, 35, 37, 38;

q = 8, n = 3, 4, 6, 8, 9, 13, 16, 17, 19, 20, 23, 24, 25, 27;

q = 9, n = 4, 12.
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Any digraph not listed in any of the two lists above do not have P+
0,1- completion.

He concluded his study by giving some relationships between P+
0,1- completion

and other classes.

In the next section, we give relationships between various matrix completions

that have been studied in the classes we have reviewed. Most of the relationships

connects classes of matrices with similar entries. The relationship among classes

helps in knowing which set of digraphs to consider when doing classifications,

hence at some point it acts as a necessary condition.

2.2 Relationship between various matrix completion

In 2003, Hogben analyzed related classes and their subclasses in (Hogben, 2003a).

Let Π be P , wssP , ssP and nonnegative P , then the four very important rela-

tionships from her results are listed below:

1. Any digraph that has Π0-completion also has Π-completion.

2. Any digraph that has Π0-completion also has Π0,1-completion.

3. Any digraph that has Π0,1-completion also has Π-completion.

4. Asymmetric digraph that has Π-completion also has Π0,1-completion.

In a separate paper, Hogben extended the study of relationships between pairs

of classes in (Hogben, 2003b). She gave new result relating positive P -completion

and negative P -completion. It was shown that, any pattern that has negative P -

completion also has positive P -completion.

In the next section, we will be identifying gaps in literature as per the previous

researches on classes of P -matrices.

2.3 Gaps in the literature

From the studies reviewed in Section §2.1 on completions for various classes of

P -matrices, it is very evident that there are some subclasses that have not been

studied. To make it clear, summary of the current state of knowledge for various

classes of P -matrices is given in Table 2.1.
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Table 2.1: Research works on completions for various classes of P -matrices
aaaaaaaa
Class

Entries
Undefined Wss Ss Nonnegative Positive

P Yes* Yes Yes Yes Yes
P0 Yes Yes No Yes No
P0,1 Yes Yes Yes No No
P+
0 Yes No No No No
P+
0,1 Yes* No? No No No

In the table above, “Yes” means it has been studied and complete classifica-

tions of digraphs of up to order 4 was given; “No” means there has been little

attention on the class; an asterisk “*” by “Yes” means it has been studied with

incomplete classification of digraphs of up to order 4; an asterisk “?” by “No”

means it has been studied and it is where this research is based on.

By examining Table 2.1, three subclasses have been considered for weakly sign

symmetric entries, that is, wssP -matrices, wssP0-matrices and wssP0,1-matrices.

The remaining subclasses are for P+
0 -matrices and P+

0,1-matrices

The study on wssP+
0 -matrices is problematic, and it has been explained in

Chapter 4 and hence the research on wssP+
0,1-matrices: results and discussions

are presented in Chapter 4.
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Chapter 3

Methodology
This chapter outlines the procedure used to determine whether or not a pat-

tern has weakly sign symmetric P+
0,1-completion and finally zero completion to a

weakly sign symmetric P+
0,1-matrix.

3.1 Basic concepts

At its basic level, matrix completion problems are like mad libs, the children’s

word game or sudoku puzzle game. In both situation, you are filling in the blanks,

in some cases it is not an easy task. For example, if we consider a sudoku puzzle

game. The objective is to fill a 9× 9 grid with digits so that each column, each

row, and each of the nine 3× 3 subgrids that compose the grid contains all of the

digits from 1 to 9 (desired property). For matrix completion problems, we also

fill in the blanks so that the resulting matrix has certain desired property, and

in most cases we look at the entries and determinants. There are many different

properties for various classes of matrices but in this research, we have focused on

weakly sign symmetric P+
0,1-matrices.

Graph theory and linear algebra plays an important role in this study on

weakly sign symmetric P+
0,1-completion.

3.2 Completion of patterns

The procedure on how to achieve specific objectives are presented in the following

steps:

(i) Present the necessary conditions for weakly sign symmetric P+
0,1-completion

and zero completion to a weakly sign symmetric P+
0,1-matrix through cre-

ations of theorems and some other facts on these completions. This leads

to achievement of objective (i).
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(ii) Identify various relationships of matrix completions including weakly sign

symmetric P+
0,1-completion and zero completion to weakly sign symmetric

P+
0,1-matrix which can also be presented in form of theorems and corollaries.

This leads to achievement of objective (ii).

The classifications of patterns procedure are discussed in the next steps.

(iii) Perform weakly sign symmetric P+
0,1-completions for digraphs of at most

order 4.

(i) Rule out patterns that do not attain necessary conditions presented

for in item (i) for weakly sign symmetric P+
0,1-completions also with the

help of relationships with other classes given in item (ii) and the results are

presented as lemmas.

(ii) Construct partial weakly sign symmetric P+
0,1-matrices specifying

each of the remaining patterns.

(iii) Compute all principal minors of each partial weakly sign symmetric

P+
0,1-matrices.

(iv) Assign values to all unspecified entries such that it meets the re-

quirement of weakly sign symmetric P+
0,1-matrices..

(v) Characterize those patterns having weakly sign symmetric P+
0,1-

completion as a theorem. This step leads to achievement of objective (iii).

Since zero completion is stronger than weakly sign symmetric P+
0,1-completion

and we are considering only partial weakly sign symmetric P+
0,1-matrix, we

only investigate those patterns having weakly sign symmetric P+
0,1-completion

in the next step.

(iv) List all patterns having weakly sign symmetric P+
0,1-completion given in item

(iv). Apply zero completion method to those patterns that have been listed;

that is, assign all the unspecified entries xijs to zero such that det(α) ≥

0 for any α ⊆ {1, 2, 3, 4} and at least one of each order is positive, and
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product of twin entries is non-negative then classify those patterns having

zero completion to a weakly sign symmetric P+
0,1-matrix and is presented a

theorem. This will give the results for objective (iv).

These five steps led to achievement of the four objectives of this study.
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Chapter 4

Results and discussions
In this chapter we present the main results of this research. Note that through-

out the chapter, we denote the entries of a partial matrix A as follows: for

1 ≤ i, j ≤ n, the entry aij denotes a specified non-diagonal entry, the entry xij

an unspecified entry, and the entry di denotes a specified diagonal entry (we have

studied the situation where all diagonal entries are specified since digraphs are

being used in this research). The entry cij denotes a value assigned to the un-

specified entry xij during the process of completing a partial matrix. Ac is the

completion of the partial matrix A.

The main results and discussions are organized as follows:

Section §4.1: Necessary conditions for wssP+
0,1-completion.

Section §4.2: Relationships between completion problems of wssP+
0,1-matrix and

other class of wssP -matrix.

Section §4.3: Classifications of digraphs of at most order 4 having wssP+
0 -completion.

Section §4.4: Classifications of digraphs of at most order 4 having zero completion

to a wssP+
0 -matrix.

Although in our analysis, we only considered the situation where all diagonal

entries are specified, it is worth discussing the other case briefly.

If a partial wssP+
0 -matrix omits all diagonal entries, then it can be completed

to a wssP+
0 -matrix by assigning sufficiently large values to unspecified diagonal

entries. A similar argument also applies to a partial wssP+
0,1-matrix.

The situation changes when some diagonal entries are specified. It is a require-

ment for the fully specified matrix that one of the diagonal entries is positive,

since at least one of the determinants needs to be positive in each order of the
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matrix.

In general, zeros on the diagonal tend to make completion difficult. Consider

the partial wssP+
0 -matrix A =

x 1

2 0

 which specifies Q = {(1, 2), (2, 1), (2, 2)}.

This cannot be completed to a wssP+
0 -matrix because detAc = −2 < 0 for

any completed matrix Ac of partial matrix A. Thus pattern Q does not have

wssP+
0 -completion.

As indicated earlier in Chapter 2, the study on weakly sign symmetric P+
0 -

completion.

The next result asserts that complete digraphs occur for this class.

Theorem 4.0.1. The digraphs that have weakly sign symmetric P+
0 -completion

are the complete digraphs.

Proof. Let wssP+
0 -matrix Ac be a completion of wssP+

0 matrix A having all

diagonal entries specified. Recall that a pattern has wssP+
0 -completion if every

partial wssP+
0 -matrix A can be completed to wssP+

0 -matrix Ac. Assume that

partial wssP+
0 -matrix A has the first n− 1 diagonal entries as 0 and the last is 1.

Consider the 2× 2 principal minor detA(i, j) for some i, j ∈ {1, . . . , n}. Note

that didj = 0 always. Now split into three cases:

Case 1: Position ij and ji are specified. In this case we have

detAc(i, j) = didj − aijaji ≥ 0

so 0− aijaji ≥ 0

so − aijaji ≥ 0.

Thus aijaji ≤ 0 and, by wssP+
0 -completion, we have aijaji = 0.
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Case 2: Position ij is specified and ji is unspecified.

detAc(i, j) = didj − aijcji ≥ 0

so 0− aijcji ≥ 0

so − aijcji ≥ 0

Thus aijxji ≤ 0 and, by wssP+
0 -completion, we have aijcji = 0.

Case 3: Position ij and ji are unspecified.

detAc(i, j) = didj − cijcji ≥ 0

so 0− cijcji ≥ 0

so − cijcji ≥ 0

Thus cijcji ≤ 0 and, by wssP+
0 -completion, we have cijcji = 0.

Observe that in all cases the product of twin entries is zero. However wssP+
0 -

completion requires that at least one of the 2 × 2 principal minors is positive.

This is a contradiction.

This is a new result which shows that the set of digraphs having wssP+
0 -

completion is a set of complete digraphs.

Most interesting now is that some results in the literature has become trivial.

For example, Theorem 4.2.2 in (Sinha, 2015).

From here on, all diagonal entries are assumed to be specified and in particular

positive entries since we are dealing with wssP+
0,1-matrices.

Before performing any completions, it is always important to study different

conditions required for the completion to be achieved, in the next section we

present our necessary condition and at some point more than one condition can

confirm certain (similar) results on the same digraph.
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4.1 Necessary conditions for wssP+
0 -completion and wssP+

0,1-

completion

In this section we have outlined some necessary conditions for wssP+
0 -completion

and wssP+
0,1-completion, and it is under this section that we complete the first

objective of this study.

Theorem 4.1.1. A pattern associated with the null graph of order n has zero

completion to a weakly sign symmetric P+
0,1-matrix.

Proof. Consider a pattern Q = {(1, 1), ..., (n, n)}, for any positive integer n. The

pattern Q specifies a partial wssP+
0,1-matrix A of a null graph. Perform zero

completion to A, by assigning all the non-diagonal entries to zeros, that is xij = 0

for all i 6= j, gives a n×n positive diagonal matrix Ac which is a wssP+
0,1-matrix,

since the principal minor of the principal sub-matrix Ac(α) is detAc(α) > 0 for

all α ⊆ {1, ..., n} due to the fact that detA(α) =
∏

i∈α di > 0. Hence L has a

zero completion to a weakly sign symmetric P+
0,1-matrix.

As the consequence of Theorem 4.1.1, the corollary below follows.

Corollary 4.1.2. A pattern associated with the null graph of order n has a weakly

sign symmetric P+
0,1-completion.

The next lemma will help us when showing completions of digraphs using its

relationships with sub-digraph having zero completion to a weakly sign symmetric

P+
0,1-matrix.

Lemma 4.1.3. Let D be a digraph of order k, and H be an incomplete sub-

digraph of order k−1. Moreover, assume v to be the unique vertex in D \H, and

suppose that either the out-degree or the in-degree of v is equal to 0. If H has zero

completion to a weakly sign symmetric P+
0,1-matrix, then D has zero completion

to a weakly sign symmetric P+
0,1-matrix.
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Proof. Let digraph D of order k and H an incomplete sub-digraph of order k −

1 with H having zero completion to a wssP+
0,1-matrix, then in the process of

completing a partial matrix specifying H by assigning zeros to all unspecified

entries, we have det(α) ≥ 0 ∀α ⊆ {1, . . . , k− 1} and at least one in every order

is positive. Note that det(1, . . . , k− 1) > 0 since it is the only one of order k− 1.

Now, if we consider the digraph D of order k with vertex v /∈ H i.e., only vertex

not in H, and there is no arc pointing away or towards a particular vertex v. The

partial matrix specifying D has a column or row corresponding to vertex v with

all elements unspecified which can be completed by adding zero, thus giving a

positive determinant of D, i.e., det(1, . . . , k) > 0. Hence D has zero completion

to a wssP+
0,1-matrix.

Lemma 4.1.3 leads to the theorem below for weakly sign symmetric P+
0,1-

completion, the difference on proof is that the completion of sub-digraphs some-

times does not accept zeros in the next theorem.

Theorem 4.1.4. Let D be a digraph of order k, and H be an incomplete sub-

digraph of order k − 1. Moreover, assume v to be the unique vertex in D \ H,

and suppose that either the out-degree or the in-degree of v is equal to 0. If H

has weakly sign symmetric P+
0,1-completion, then D has weakly sign symmetric

P+
0,1-completion.

Proof. The proof follows Lemma 4.1.3, given digraph D of order k and H an in-

complete sub-digraph of order k−1 withH having wssP+
0,1-completion, then in the

process of completing a partial matrix specifying H not necessarily adding zeros

to unspecified entries as in Lemma 4.1.3, we have det(α) ≥ 0 ∀α ⊆ {1, . . . , k−1}

and at least one in every order is positive. Note that det(1, . . . , k−1) > 0 since it

is the only one of order k− 1. Now, if we consider the digraph D of order k with

vertex v /∈ H i.e., only vertex not in H, and there is no arc pointing away or to-

wards a particular vertex v. The partial matrix specifying D has a column or row

corresponding to vertex v with all elements unspecified which can be completed
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by adding zero, thus giving a positive determinant of D, i.e., det(1, . . . , k) > 0.

Hence D has wssP+
0,1-completion.

Recall that zero completion is stronger than weakly sign symmetric P+
0,1-

completion.

Example 4.1.5 below verifies the results of Theorem 4.1.4.

Example 4.1.5.

Let us consider digraph D4(4, 3) and its sub-digraph D3(3, 4) in Figure 4.1.

1

2

3
1

2 3

4

D3(3, 4) D4(4, 3)

Figure 4.1: Subdigraph D3(3, 4) and digraph D4(4, 3)

An incomplete digraph D3(3, 4) of order 3 has a wssP+
0,1-completion then any

digraph of order 4 with a vertex not D3(3, 4) of either zero in-degree or out-

degree has zero completion to a wssP+
0,1-matrix. We consider digraph D4(4, 3),

vertex 4 not in D3(3, 4) has zero in-degree and D3(3, 4) is its sub-digraph, so we

only need to prove for the D3(3, 4) if it has wssP+
0,1-completion. In such a case,

by Theorem 4.1.4, digraph D4(4, 3) also has wssP+
0,1-completion.

Recall that cij is a value assigned to unspecified entry xij and xij is a specified

entry for (i,j)-position.

First, we show that the pattern of D3(3, 4) has wssP+
0,1-completion.

The partial wssP+
0,1-matrix A =


d1 a12 x13

a21 d2 x23

x31 a32 d3

 specifies D3(3, 4).
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We consider two cases:

Case 1: detA(1, 2) > 0. Then complete the partial matrix by setting all

unspecified entries to zero.

Case 2: detA(1, 2) = 0. Without loss of generality a12 6= 0 and a21 6= 0.

In this case we need to show that detA(1, 3) > 0 or detA(2, 3) > 0, and

detA > 0.

Determinants of principal sub-matrices:

detA(1, 3) = d1d3 − x13x31; detA(2, 3) = d2d3 − x23a32;

detA = −a32(d1x23 − a21x13) + x31(a12x23 − d2x13).

Case 2a: If a32 = 0 then setting x13 = c13 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12x23x31.

Now if a12 > 0, then set the values of x23 = c23, x31 = c31 > 0 or x23 =

c23, x31 = c31 < 0 and if a12 < 0, then set the values of x23 = c23 < 0 and

x31 = c31 > 0 or x23 = c23 > 0 and x31 = c31 < 0 and this gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12c23c31 > 0.

Case 2b: If a32 6= 0 then setting x31 = x23 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a32x13.

Now if a12a23 > 0, then set the value x13 = c13 > 0 and if a12a23 < 0, then set

x13 = c13 < 0 , this gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a23c13 > 0.

Thus, in all cases detA(1, 3) > 0, detA(2, 3) > 0 and detA > 0.

Therefore, any pattern of D3(3, 4) has wssP+
0,1-completion.

We have shown that D3(3, 4) has wssP+
0,1-completion, and according to The-

orem 4.1.4, pattern of D4(4, 3) also has wssP+
0,1-completion.

In this example, we have given detail workings instead of just using Theorem
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4.1.4.

The partial wssP+
0,1-matrixA =



d1 a12 x13 x14

a21 d2 x23 x24

x31 a32 d3 x34

x41 x42 a43 d4


specifies digraphD4(4, 3).

We consider two cases:

Case 1: detA(1, 2) > 0. Then complete the partial matrix by setting all

unspecified entries to zero.

Case 2: detA(1, 2) = 0. Without loss of generality a12 6= 0 and a21 6= 0.

In this case we first try to complete A(1, 2, 3): the partial matrix that specifies

D3(3, 4).

In this case we need to show that detA(1, 3) > 0 or detA(2, 3) > 0, and

detA > 0.

Determinants of principal sub-matrices:

detA(1, 3) = d1d3 − x13x31; detA(2, 3) = d2d3 − x23a32;

detA = −a32(d1x23 − a21x13) + x31(a12x23 − d2x13).

Case 2a: If a32 = 0 then setting x13 = c13 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12x23x31.

Now if a12 > 0, then set the values of x23 = c23, x31 = c31 > 0 or x23 =

c23, x31 = c31 < 0 and if a12 < 0, then set the values of x23 = c23 < 0 and

x31 = c31 > 0 or x23 = c23 > 0 and x31 = c31 < 0 and this gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12c23c31 > 0.

Case 2b: If a32 6= 0 then setting x31 = x23 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a32x13.

Now if a12a23 > 0, then set the value x13 = c13 > 0 and if a12a23 < 0, then set

x13 = c13 < 0 , this gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a23c13 > 0.



42

Thus, in all cases detA(1, 3) > 0, detA(2, 3) > 0 and detA > 0.

Therefore, pattern D3(3, 4) has wssP+
0,1-completion.

In case 2a and 2b, set x14 = x24 = x34 = x41 = x42 = 0 gives detA > 0.

Therefore, any pattern of D4(4, 3) has wssP+
0,1-completion.

This also applies to all digraphs of order 4 with a vertex having either zero in-

degree or out-degree and not in sub-digraph of order 3 having wssP+
0,1-completion.

Example 4.1.5 can not be used to verify Lemma 4.1.3 since digraph D3(3, 4)

does not have zero completion to a wssP+
0,1-matrix.

The next 3 theorems helps ruling out some patterns having certain properties

stated in the Theorems 4.1.6, 4.1.8 and 4.1.9.

Theorem 4.1.6. Let D be an incomplete digraph of order k, and if there exist

two vertices with either in-degree or out-degree equal to k − 1, then D does not

have weakly sign symmetric P+
0,1-completion.

Proof. Consider an incomplete digraph D of order K with two vertices having

in-degree equal to k − 1, then the partial matrices that specifies such digraphs

have two of its columns specified. Likewise if they have two vertices having out-

degree equal k − 1, then the partial matrices that specifies such digraphs have

two of its rows specified. If we specify entries of the partial matrix A specifying

D as follows:

i di = 1; for i = 1, . . . k.

ii All specified entries of the partial matrix to be 1.

This qualifies to be a wssP+
0,1-matrix having either two rows or columns being

identical then its determinant is equal to zero. Therefore, D does not have a

wssP+
0,1-completion.
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Note that if we let A be a square matrix and AT be its transpose matrix then

detA = detAT , and therefore, any matrix with identical rows or columns have

zero determinant.

Example 4.1.7 below confirms the results of Theorem 4.1.6.

Example 4.1.7.

1

2

3
1

2 3

4

D3(4, 4) D4(9, 8)

Figure 4.2: Digraph D3(4, 4) and D4(9, 8)

For patterns D3(4, 3) and D4(9, 8) in Figure 4.2, digraph D3(4, 3) of order 3

has 2 vertices 1 and 2 with in-degree equal to 2. Similarly, digraph D9(9, 8) of

order 4 has 2 vertices 1 and 2 with out-degree equal to 3 and therefore, according

to Theorem 4.1.6, they do not have a wssP+
0,1-completion.

We can see it clearly by considering partial wssP+
0,1-matrices below:

A1 =


1 1 x13

1 1 x23

1 1 1

 and A2 =



1 1 1 1

1 1 1 1

1 1 1 1

x41 x42 x43 1


specifies D3(4, 4) and

D4(9, 8) respectively.

The determinant detA1 = detA2 = 0 for any choice of values for unspecified

entries. Hence D3(4, 3) and D3(4, 4) do not have wssP+
0,1-completion.

Theorem 4.1.8. Let D be a digraph of order k and H be an incomplete sub-

digraph of order k − 1. Assume also that there exist a vertex v in D \H having
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either in-degree or out-degree equal to k − 1. If H does not have a wssP+
0,1-

completion, then D does not have a wssP+
0,1-completion.

Proof. Let digraph D of order k and an incomplete sub-digraph H of order k− 1

that does not have wssP+
0,1-completion and have a vertex v in D\H with either in-

degree or out-degree equal to k−1. The partial k×k wssP+
0,1-matrix A specifying

D has a partial principal matrix A(1 . . . k − 1) specifying H, again the partial

matrix A has a row of v (resp. column of v) with all specified entries if in-degree

as k − 1 (resp. if out-degree as k − 1). In a situation where all specified entries

in row or column v are zeros, then detA = detA(1, . . . , k − 1). If H specified

A(1, . . . , k − 1) does not have a wssP+
0,1-completion then D does not also have a

wssP+
0,1-completion.

Example 4.1.7 can be used to elaborate the results of Theorem 4.1.8.

Since it has been shown that digraph D3(4, 4) of order 3 does not have wssP+
0,1-

completion in Example 4.1.7. Similarly, digraph D4(9, 8) in 4.2 contains D3(4, 4)

and vertex 4 which is not in D3(4, 4) with in-degree of 3 hence by the Theorem

4.1.8, D4(9, 8) does not have wssP+
0,1-completion. One can also see from the

partial matrices A1 and A2 in Example 4.1.7, if all specified entries of column 3

has zeros, (as per the theorem) that detA1 = detA2 = 0 and hence both lack

wssP+
0,1-completion.

It has been stated earlier, immediately before the start of this section that

sometimes two or more conditions can give a conclusion on some digraphs.

Theorem 4.1.9. An incomplete digraph of order k does not have zero completion

to a wssP+
0,1-matrix if it has a complete sub-digraph of order 2.

Proof. Consider a pattern Q associated with a digraph that has a complete sub-

digraph of order 2.

Assume that the complete sub-digraph is between vertices 1 and 2. Now let

us specify the entries of the partial matrix A as follows:

i di = 1; for i = 1, . . . k.
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ii a12 = a21 = 1.

iii All other specified entries are defined to be 0.

Let completed matrix Ac be the zero completion of a partial matrix A. It

satisfies detAc = 0 (because the top rows of A are identical). Therefore, pattern

Q does not have zero completion to a wssP+
0,1-matrix, as required.

Example 4.1.10.

Consider a partial wssP+
0,1-matrix A =


d1 a12 x13

a21 d2 a23

x31 x32 d3

 specifying D3(3, 1). This

is an incomplete digraph of order 3 that has a complete sub-digraph of order 2.

Assume that d1 = d2 = a12 = a21 = 1 and setting all unspecified entries to zero

give detA(1, 2) = detA = 0. Hence the pattern does not have zero completion

to a wssP+
0,1-matrix.

Theorems 4.1.11 and 4.1.12 are very helpful in Section s: p0+ completion.

Theorem 4.1.11. ((DeAlba et al., 2003), Lemma 4.1) All patterns for 2 × 2

matrices have weakly sign symmetric P -completion and (weakly) sign symmet-

ric P0-completion. A pattern for 3 × 3 matrices has weakly sign symmetric P -

completion and (weakly) sign symmetric P0-completion if and only if its digraph

does not contain a 3-cycle or is complete.

Theorem 4.1.12. ((DeAlba et al., 2003), Theorem 4.3) Let Q be a pattern for

4× 4 matrices that includes all diagonal positions. The pattern has (weakly) sign



46

symmetric P -completion if and only if its digraph is one of the following.

q = 0 n = 1;

q = 1, n = 1;

q = 2, n = 1− 5;

q = 3, n = 1− 11, 13;

q = 4, n = 1− 12, 14− 19, 21− 23, 25− 27;

q = 5, n = 1− 5, 7− 10, 14− 17, 21− 24, 26− 29, 31, 33− 34, 36, 37

q = 6, n = 1− 8, 13, 15, 17, 19, 23, 26− 27, 32, 35, 38− 40, 43, 46;

q = 7, n = 2, 4− 5, 9, 14, 24, 29, 34, 36;

q = 8, n = 1, 10, 12, 18;

q = 9, n = 8, 11;

q = 12, n = 1.

4.2 Relationships between completion problems of wssP+
0,1-

matrix and other class of wssP -matrix

In this section we have given relationships between completion problems of wssP+
0 -

matrix, wssP+
0,1-matrix and other class of wssP -matrix, and we complete the

second objective of this study under this section.

Theorems 4.2.1 to 4.2.10 give the relationships among the sets of patterns

having completion of various classes of matrices.

Theorem 4.2.1. ((Sinha, 2015), Corollary 5.2) Any asymmetric pattern that

has weakly sign symmetric P -completion also has weakly sign symmetric P+
0,1-

completion.

Note that any pattern that has zero completion to a wssP+
0,1-matrix also has

wssP+
0,1-completion. The contrapositive of this statement is that, if a pattern does
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not have wssP+
0,1-completion also does not have zero completion to a wssP+

0,1-

matrix. This property will help us a great deal in eliminating patterns that lack

wssP+
0,1-completion when analyzing zero completion to a wssP+

0,1-matrix.

Theorem 4.2.2. ((Sinha, 2015), Corollary 4.3) Any pattern that has weakly sign

symmetric P+
0 -completion also has weakly sign symmetric P+

0,1-completion.

The contrapositive statement of Theorem 4.2.2: Any pattern that does not

have weakly sign symmetric P+
0,1-completion does not have weakly sign symmetric

P+
0 -completion.

Theorem 4.2.3. ((Sinha, 2015), Corollary 3.1) Any pattern that has weakly sign

symmetric P+
0,1-completion also has weakly sign symmetric P -completion.

The contrapositive statement of Theorem 4.2.3: Any pattern that does not

have weakly sign symmetric P -completion does not have weakly sign symmetric

P+
0,1-completion.

From Theorems 4.2.2 and 4.2.3, Corollary 4.2.4 follows.

Corollary 4.2.4. ((Sinha, 2015), Corollary 2.3) Any pattern that has weakly

sign symmetric P+
0 -completion also has weakly sign symmetric P -completion.

The contrapositive statement of Corollary 4.2.4: Any pattern that does not

have weakly sign symmetric P -completion does not have weakly sign symmetric

P+
0 -completion.

Theorem 4.2.5. Any pattern that has weakly sign symmetric P+
0 -completion has

weakly sign symmetric P0-completion

Proof. Let D be a digraph associated to pattern Q having weakly sign symmetric

P+
0 -completion and let A be a partial wwsP+

0 -matrix specifying D. Clearly, A be

a partial wwsP0-matrix. Since every partial wwsP+
0 -matrix specifying D is com-

pleted to a wwsP+
0 -matrix Ac. Again, completed matrix is wwsP0-matrix. Hence

digraph D associated to pattern Q has weakly sign symmetric P0-completion.
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Theorem 4.2.6. ((Hogben, 2003a), Corollary 2.12) Any pattern that has weakly

sign symmetric P0-completion has weakly sign symmetric P0,1-completion

From Theorems 4.2.5 and 4.2.6, Corollary 4.2.7 follows.

Corollary 4.2.7. Any pattern that has weakly sign symmetric P+
0 -completion

also has weakly sign symmetric P0,1-completion.

Theorem 4.2.8. ((Hogben, 2003a), Corollary 2.3) Any pattern that has weakly

sign symmetric P0-completion has weakly sign symmetric P -completion

Theorem 4.2.9. Any pattern that has weakly sign symmetric P+
0,1-completion

also has weakly sign symmetric P0,1-completion.

Proof. The proof technique is similar to the proof of Theorem 4.2.5, we replace

P+
0 in place and P+

0,1 , in place of P0 in place of P0,1.

Theorem 4.2.10. ((Hogben, 2003a), Corollary 2.9) Any pattern that has weakly

sign symmetric P0,1-completion has weakly sign symmetric P -completion

There are no implications between weakly sign symmetric P+
0,1-completion and

weakly sign symmetric P0-completion. This is shown by Example 4.2.11.

Example 4.2.11.

Consider digraphs in Figure 4.3.

1

2

3
1

2 3

4

D3(4, 1) D4(4, 16)

Figure 4.3: Digraphs D3(4, 1) and D4(4, 16)
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Digraphs D3(4, 1) does not contain 3-cycle and according to Theorem 4.1.11,

it has weakly sign symmetric P0-completion.

The partial wssP+
0,1-matrix A =


1 0 x13

0 1 1

x31 1 1

 species D3(4, 1).

In the given partial wssP+
0,1-matrix, we need to show that a completed wssP+

0,1-

matrix satisfies the following:

i detA(1, 3) ≥ 0;

ii detA > 0;

iii x13x31 ≥ 0.

First, let us find the determinant of A(1, 3).

detA(1, 3) = 1− x13x31.

In order to satisfy the condition (i), that is detA(1, 3) ≥ 0, then x13x31 ≤ 1.

Second, let us find the determinant of A.

detA = 1(1− 1)− 0(0− x31) + x13(0− x31) = −x13x31.

Now, in order to satisfy condition (ii), that is detA > 0, then x13x31 < 0.

Condition (iii) says x13x31 ≥ 0 and therefore we have a contradiction. Hence

D3(4, 1) do not have a wssP+
0,1-completion.

It is now clear that digraphD3(4, 1) have weakly sign symmetric P0-completion

and does not have weakly sign symmetric P+
0,1-completion.

Next, we examine digraph D4(4, 16).

According to Theorem 4.1.12, digraph D4(4, 16) have weakly sign symmetric

P -completion, since it is asymmetric then by Theorem 4.2.1, digraph D4(4, 16)

have weakly sign symmetric P+
0,1-completion. Again, by ((DeAlba et al., 2003),
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Lemma 4.3), it does not have weakly sign symmetric P0-completion.

Example 4.2.11 shows that there is no relationship between weakly sign sym-

metric P0-completion and weakly sign symmetric P+
0,1-completion in general.

The relationships between completion problems of wssP+
0,1-matrix and other

class of wssP -matrices can be summarized in Figure 4.4.

wssP+
0 -completion wssP+

0,1-completion

wssP0-completion wssP -completion

wssP0,1-completion

Theorem 4.2.2

Theorem 4.2.3
Corollary 4.2.7

Theorem 4.2.8

Theorem 4.2.6

Theorem 4.2.5

Theorem 4.2.9

Corollary 4.2.4

Theorem 4.2.10

Figure 4.4: Relationship between various classes of wssP -matrices

Objectives (iii) is being tackled in Sections 4.3.

The list of all digraphs Dp(q, n) for 1 ≤ p ≤ 4 has been given in the Appendix.

The results of Sections 4.1 and 4.2 are used in Sections 4.3 and 4.4.

4.3 Classification of digraphs of order at most 4 having

wssP+
0,1-completion

In this section we have presented the results of wssP+
0,1-completion of patterns

associated to digraphs of at most order 4.
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Recall that D4(q, n) where q is number of arcs and n is the diagram number.

There are 238 non-isomorphic digraphs of at most order 4 (see, Appendices).

It is important to note first that there is only one (non-isomorphic) digraph

of order 1; it is trivial to show that a 1 × 1 partial matrix has both wssP+
0,1-

completion and zero completion to a wssP+
0,1-matrix since it specifies complete

digraphs.

4.3.1 wssP+
0,1-completion: digraphs of order 2

In this subsection we will present the results of wssP+
0,1-completion and zero

completion to a wssP+
0,1-matrix of patterns associated to digraphs of order 2.

There are 3 non-isomorphic digraphs of order 3 and are given in the Appendices.

The patterns specifying partial matrices of order 2 are Q1 = {(1, 1), (2, 2)},

Q2 = {(1, 1), (1, 2), (2, 2)} and Q3 = {(1, 1), (1, 2), (2, 1), (2, 2)}. Patterns Q1, Q2

and Q3 specify D2(0, 1), D2(1, 1) and D2(2, 1) respectively.

Theorem 4.3.1. : All digraphs of order 2 have zero completion to a weakly sign

symmetric P+
0,1-matrix.

Proof. : For all patterns, the product of diagonal entries is positive. In patterns

Q1 and Q2, we set any unspecified entries to be zero, resulting in the product of

non-diagonal entries being zero. Thus, the determinant is positive and the matrix

is wssP+
0,1-matrix, as required.

Finally pattern Q3 is complete since it specifies a complete digraph.

Note that zero completion is stronger than plain completion, hence this theo-

rem implies that all digraphs of order 2 have weakly sign symmetric P+
0,1-completion.

4.3.2 wssP+
0,1-completion: digraphs of order 3

In this subsection we wish to classify all digraphs of order 3 having wssP+
0,1-

completion. The next lemma and theorem gives our result for wssP+
0,1-completion

for digraphs of order 3. There are 16 non-isomorphic digraphs of order 3 (see,

appendices).



52

Lemma 4.3.2. If a digraph of order 3 is in the following list, then it does not

have wssP+
0,1-completion:

D3(3, 2), D3(4, 1), D3(4, 2), D3(4, 3), D3(4, 4), D3(5, 1)

Proof. Each of the digraphs

D3(3, 2), D3(4, 2), D3(5, 1)

contains a 3-cycle and by Theorem 4.1.11, these digraphs do not have wssP -

completion. Hence, by Corollary 4.2.4, these digraphs do not have wssP+
0,1-

completion.

Digraphs D3(4, 3) and D3(4, 4) are of order 3 with 2 vertices having in-degree

equal to 2 and out-degree equal to 2 respectively; by Theorem 4.1.6, they do not

have a wssP+
0,1-completion.

Finally, it has been shown in Example 4.2.11, that digraph D3(4, 1) does not

have a wssP+
0,1-completion.

Theorem 4.3.3. If a digraph of order 3 is in the following list, then it has

wssP+
0,1-completion:

D3(0, 1), D3(1, 1), D3(2, 1), D3(2, 2), D3(2, 3),

D3(2, 4), D3(3, 1), D3(3, 3), D3(3, 4), D3(6, 1).

Proof. Digraph D3(0, 1) is a null digraph and by Corollary 4.1.2, it has wssP+
0,1-

completion.

Digraph D3(6, 1) is complete since it specifies a complete digraph.

The following of digraphs

D3(1, 1), D3(2, 2), D3(2, 3), D3(2, 4), D3(3, 3)
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does not contain 3-cycle and by Theorem 4.1.11, these digraphs do have wssP -

completion, again each these digraphs are asymmetric. Thus, by Theorem 4.2.1,

these digraphs have wssP+
0,1-completion.

It has been shown in Example 4.1.5, that digraphs D3(3, 4) have wssP+
0,1-

completion.

Here we analyze each of the remaining 2 digraphs.

First, digraph D3(2, 1).

Consider the partial wssP+
0,1-matrix A =


d1 a12 x13

a21 d2 x23

x31 x32 d3

 specifying D3(2, 1).

We consider two cases:

Case 1: detA(1, 2) > 0. Then complete the partial matrix by setting all

unspecified entries to zero.

Case 2: detA(1, 2) = 0. Without loss of generality A =


d1 d1 x13

d2 d2 x23

x31 x32 d3


In this case we need to show that detA(1, 3) > 0 or detA(2, 3) > 0, and

detA > 0.

Determinants of principal sub-matrices:

detA(1, 3) = d1d3 − x13x31; detA(2, 3) = d2d3 − x23x32;

detA = −x23(d1x32 − d1x31) + x13(d2x32 − d2x31).

Setting x31 = c31 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 − x23x32; detA = x32(d2x13 − d1x23).

Setting x23 = c23 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = d2x13x32.

Setting x13 = c13 > 0 and x32 = c32 > 0 gives:
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detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = d2c13c32 > 0.

Thus detA(1, 3) > 0, detA(2, 3) > 0 and detA > 0. In both cases the partial

wssP+
0,1-matrix A is completed to wssP+

0,1-matrix Ac Therefore, any pattern of

D3(2, 1) has wssP+
0,1-completion.

Second, digraph D3(3, 1).

Consider the partial wssP+
0,1-matrix A =


d1 a12 x13

a21 d2 a23

x31 x32 d3

 specifying D3(3, 1).

We consider two cases:

Case 1: detA(1, 2) > 0. Then complete the partial matrix by setting all

unspecified entries to zero.

Case 2: detA(1, 2) = 0. Without loss of generality a12 6= 0 and a21 6= 0.

In this case we need to show that detA(1, 3) > 0 or detA(2, 3) > 0, and

detA > 0.

Determinants of principal sub-matrices:

detA(1, 3) = d1d3 − x13x31,

detA(2, 3) = d2d3 − a23x32,

detA = −a23(d1x32 − a12x31) + x13(a21x32 − d2x31).

Case 2a: If a23 = 0 then setting x31 = c31 = 0 gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a21x13x32.

Now if a21 > 0, then set x13 = c13, x32 = c32 > 0 or x13 = c13, x32 = c32 > 0

and if a21 < 0, then set x13 = c13 > 0 and x32 = c32 < 0 or x13 = c13 < 0 and

x32 = c32 > 0 and this gives gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a21c13c32 > 0.

Case 2b: If a23 6= 0 then setting x13 = x32 = 0 gives:



55

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a23x31.

Now if a12a23 > 0, then set the value x31 = c31 > 0 and if a12a23 < 0, then set

x31 = c31 < 0 , this gives:

detA(1, 3) = d1d3 > 0; detA(2, 3) = d2d3 > 0; detA = a12a23c31 > 0.

Thus detA(1, 3) > 0, detA(2, 3) > 0 and detA > 0.

Therefore, any pattern of D3(3, 1) has wssP+
0,1-completion.

In the next proposition, we give digraphs of order 3 that have wssP -completion

and do not have wssP+
0,1-completion.

Proposition 4.3.4. If a digraph of order 3 is in the following list, then it has

wssP -completion and does not have wssP+
0,1-completion.

D3(4, 1), D3(4, 3), D3(4, 4)

Proof. These 3 digraphs do not contain 3-cycle hence by Theorem 4.1.11, they

have wssP -completion. However, we can observe from the results in Lemma 4.3.2

that they do not have wssP+
0,1-completion.

4.3.3 wssP+
0,1-completion: digraphs of order 4

In this subsection we wish to classify all digraphs of order 4 having wssP+
0,1-

completion. The lemmas and theorem below gives our result for wssP+
0,1-completion

for digraphs of order 4. There are 218 non-isomorphic digraphs of order 4 (see,

Appendices).

Lemma 4.3.5. If a digraph of order 4 is in the following list, then it does not
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have wssP+
0,1-completion:

q = 3, n = 12;

q = 4, n = 13, 20, 24;

q = 5, n = 6, 11− 13, 18− 20, 25, 30, 32, 35, 38;

q = 6, n = 9− 12, 14, 16, 20− 22, 24− 25, 28− 31, 33− 34,

36− 37, 41− 42, 44− 45, 47− 48;

q = 7, n = 1, 3, 6− 8, 10− 13, 15− 23, 25− 28, 30− 33, 35, 37− 38;

q = 8, n = 2− 9, 11, 13− 17, 19− 27;

q = 9. n = 1− 7, 9− 10, 12− 13;

q = 10, n = 1− 5;

q = 11, n = 1.

Proof. Each of the digraphs above is not listed in Theorem 4.1.12, therefore,

they do not have wssP -completion and hence by Theorem 4.2.3 they do not have

wssP+
0,1-completion.

We will give another set of digraphs that lacks wssP+
0,1-completion in the next

lemma.

Lemma 4.3.6. If a digraph of order 4 is in the following list, then it does not

have wssP+
0,1-completion:

q = 6; n = 40, 43;

q = 7; n = 14, 24, 29, 34, 36;

q = 8; n = 10, 12, 18;

q = 9; n = 8, 11.
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Proof. First, digraphs

D4(6, 43), D4(7, 36), D4(8, 10), D4(8, 18), D4(9, 11)

are of order 4 with 2 vertices having in-degree equal to 3. Again, another set of

digraphs

D4(6, 40), D4(7, 29), D4(8, 12), D4(9, 8)

are of order 4 with 2 vertices having out-degree equal to 3.

By Theorem 4.1.6, all these digraphs do not have a wssP+
0,1-completion.

Second, we have already shown in Example 4.2.11 that, digraph D3(4, 1) do

not have wssP+
0,1-completion.

Digraphs D4(7, 14) and D4(7, 24) are of order 4 and contains D3(4, 1), and also

having vertex 4 not in D3(4, 1) of in-degree and out-degree equal to 3 respectively.

Again, digraph D4(7, 34) is of order 4 and contains D3(4, 1), and also having

vertex 4 not in D3(4, 1) of out-degree equal to 3. Using Theorem 4.1.8, the three

digraphs do not have a wssP+
0,1-completion.

Lemma 4.3.7. Digraphs D4(6, 2), D4(7, 4), D4(7, 5) and D4(8, 1) do not have a

wssP+
0,1-completion.

Proof. Let us consider a partial wssP+
0,1-matrices A =



1 1 1 x14

1 1 1 x24

1 1 1 x34

x41 x42 x43 1


spec-

ifying D4(6, 2).

For any choice of values for unspecified entries, the determinant detA = 0.

Hence D4(6, 2) do not have wssP+
0,1-completion.

Digraphs D4(7, 4), D4(7, 5) and D4(8, 1) contains D4(6, 2) as an induced sub-

digraph. Any partial matrix specifying any of the other 3 digraphs with additional

specified entries set to 1 has determinant zero and therefore these digraphs does

not have wssP+
0,1-completion.
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The theorem below give digraphs of order 4 that have wssP+
0,1-completion.

Theorem 4.3.8. If a digraph D4(q, n) is in the following list, then it has wssP+
0,1-

completion:

q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1− 5;

q = 3, n = 1− 11, 13;

q = 4, n = 3− 12, 14− 19, 21− 23, 25− 27;

q = 5, n = 8− 10, 14− 16, 22− 24, 26− 29, 31, 33− 34, 36− 37;

q = 6, n = 23, 26, 32, 35, 46;

q = 12, n = 1.

Proof. First, we show that D4(0, 1) and D4(12, 1) have wssP+
0,1-completion.

Digraph D4(0, 1) is a null digraph and by Corollary 4.1.2, it has wssP+
0,1-

completion.

Digraph D4(12, 1) is complete since it specifies a complete digraph.

Second, consider asymmetric digraphs in Theorem 4.1.12, and are listed below.

q = 1, n = 1;

q = 2, n = 2− 5;

q = 3, n = 4− 11, 13;

q = 4, n = 16− 19, 21− 23, 25− 27;

q = 5, n = 29, 31, 33− 34, 36− 37;

q = 6, n = 46.
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All these asymmetric digraphs have wssP -completion, and according to The-

orem 4.2.1, each of those digraphs in the list above has wssP+
0,1-completion.

Third, we will make use of the relationship between digraphs of order 4 and

those digraphs of order 3 which have wssP+
0,1-completion. Note that digraphs we

discuss next are associated to non-asymmetric patterns.

Earlier, we have shown digraphs of order 3 that have wssP+
0,1-completion in

Theorem 4.3.3. We are interested only in non-asymmetric digraphs of order 3

having wssP+
0,1-completion, these are D3(2, 1), D3(3, 1) and D3(3, 4).

For convenience of the readers of this thesis and easy interpretation, in the

appendices we have labeled the vertices in a way that incomplete digraphs of

order 3 have vertices 1, 2 and 3 and the vertex 4 has either zero in-degree or

out-degree for these cases of digraphs. Let us consider the list below:

q = 2, n = 1;

q = 3, n = 1− 3;

q = 4, n = 3− 12;

q = 5, n = 8− 10, 14− 16, 22− 24, 26− 28

q = 6, n = 23, 26, 32, 35.

We will give 3 groups of incomplete digraphs of order 4 containing any of the

sub-digraphs D3(2, 1), D3(3, 1) and D3(3, 4) as an induced sub-digraphs and the

vertex 4 has either zero in-degree or out-degree.

Group 1: Each of the digraphs

D4(2, 1), D4(3, 3), D4(5, 14), D4(5, 24)

contains D3(2, 1) and has one of the vertex not in D3(2, 1) having either zero
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in-degree or out-degree.

Group 2: Each of the digraphs

D4(3, 2), D4(4, 4), D4(4, 7), D4(4, 8), D4(4, 11), D4(4, 12), D4(5, 8),

D4(5, 9), D4(5, 15), D4(5, 16), D4(5, 26), D4(5, 27), D4(6, 26), D4(6, 35)

contains D3(3, 1) and has one of the vertex not in D3(3, 1) having either zero

in-degree or out-degree.

Group 3: Each of the digraphs

D4(3, 1), 4(4, 3), D4(4, 5), D4(4, 6), D4(4, 9), D4(4, 10),

D4(5, 10), D4(5, 22), D4(5, 23), D4(5, 28), D4(6, 23), D4(6, 32)

contains D3(3, 4) and has one of the vertex not in D3(3, 4) having either zero

in-degree or out-degree.

Now, since each of the digraph in group 1, 2 and 3 contains an incomplete

sub-digraph of order 3 that has wssP+
0,1-completion, and one of the vertex has

either zero in-degree or out-degree, then, by Theorem 4.1.4, all these digraphs

have wssP+
0,1-completion.

Finally, we will do more analysis for the partial matrices specifying digraphs

D4(4, 14) and D4(4, 15). We assign values to all unspecified and try to complete.

We will present the results of those digraphs as follows:

First, pattern D4(4, 14)

The partial matrix A =



d1 a12 x13 x14

a21 d2 x23 x24

a31 a32 d3 x34

x41 x42 x43 d4


specifies digraph D4(4, 14)

We will consider two cases:

Case 1: detA(1, 2) > 0. Then complete the partial matrix by setting all
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unspecified entries with zeros.

Case 2: detA(1, 2) = 0. Without loss of generality a12 6= 0 and a21 6= 0. Then

set x34 = c34 and x43 = c43 with conditions that c43 > 0 and 0 < c34 < d3d4c
−1
43 ,

and all other unspecified entries to zero.

Now, the partial matrix can be completed to Ac =



d1 a12 0 0

a21 d2 0 0

a31 a32 d3 c34

0 0 c43 d4


.

This can be seen by looking at the principal minors:

detA(1, 2) = 0; detA(1, 3) = d1d3 > 0; detA(1, 4) = d1d4 > 0;

detA(2, 3) = d2d3 > 0; detA(2, 4) = d2d4 > 0; detA(3, 4) = d3d4− c34c43 > 0;

detA(1, 2, 3) = 0; detA(1, 2, 4) = 0; detA(1, 3, 4) = d1(d3d4 − c34c43) > 0;

detA(2, 3, 4) = d2(d3d4 − c34c43) > 0; detA = a12a21c34c43 > 0.

Since all determinants are nonnegative and at least one in every order is

positive, then the partial weakly sign symmetric P+
0,1-matrix has been completed

to a weakly sign symmetric P+
0,1-matrix.

Therefore, any pattern of D4(4, 14) has wssP+
0,1-completion.

Second, pattern D4(4, 15)

The partial matrix A =



d1 a12 a13 x14

x21 d2 x23 x24

a31 a32 d3 x34

x41 x42 x43 d4


specifies digraph D4(4, 15).

We will consider two cases:

Case 1: detA(1, 3) > 0. Then complete the partial matrix by setting all

unspecified entries with zeros.

Case 2: detA(1, 3) = 0. Without loss of generality a13 6= 0 and a31 6= 0. Then

set x24 = c24 and x42 = c42 with conditions that c42 > 0 and 0 < c24 < d3d4c
−1
42 ,



62

and all other unspecified entries to zero.

Now, the partial matrix can be completed to Ac =



d1 a12 a13 0

0 d2 0 c24

a31 a32 d3 0

0 c42 0 d4


.

This can be seen by looking at the principal minors:

detA(1, 2) > 0; detA(1, 3) = 0; detA(1, 4) = d1d4 > 0;

detA(2, 3) = d2d3 > 0; detA(2, 4) = d2d4 − c24c42 > 0;

detA(3, 4) = d3d4 > 0; detA(1, 2, 3) = 0;

detA(1, 2, 4) = d1(d2d4 − x24x42) > 0; detA(1, 3, 4) = 0;

detA(2, 3, 4) = d4(d2d4 − c24c42) > 0; detA = a13a31c24c42 > 0.

Since all determinants are nonnegative and at least one in every order is

positive, then the partial weakly sign symmetric P+
0,1-matrix has been completed

to weakly sign symmetric P+
0,1-matrix.

Therefore, any pattern of D4(4, 15) has wssP+
0,1-completion.

In the next proposition, we give digraphs of order 4 that have wssP -completion

and do not have wssP+
0,1-completion.

Proposition 4.3.9. If a digraph D4(q, n) is in the following list, then it has

wssP -completion and does not have wssP+
0,1-completion:

q = 6, n = 2, 40, 43;

q = 7, n = 4, 5, 14, 24, 29, 34, 36;

q = 8, n = 1, 10, 12, 18;

q = 9, n = 8, 11.

Proof. By Theorem 4.1.12, these digraphs have wssP -completion. However, we
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can observe from the results in Lemma 4.3.6 and 4.3.7 that they do not have

wssP+
0,1-completion.

When we eliminate digraphs in Lemma 4.3.5, 4.3.6 and 4.3.7 which do not have

wssP+
0,1-completion and those digraphs in Theorem 4.3.8 which have wssP+

0,1-

completion, we remain with digraphs which have wssP -completion and we do

not know if they have wssP+
0,1-completion, leaving our classification under this

subsection incomplete. The list is given below.

q = 4, n = 1− 2;

q = 5, n = 1− 5, 7, 17, 21;

q = 6, n = 1, 3− 8, 13, 15, 17, 19, 27, 38− 39;

q = 7, n = 2, 9.

The next section gives the results for fourth objective of this study.

4.4 Classification of digraphs of order at most 4 having

zero completion to a wssP+
0,1-matrix

In this section we have presented the results of zero completion to a wssP+
0,1-

matrix of patterns associated to digraphs of at most order 4. Our main results

are in form of theorems, which gives a complete classification.

We have already shown in Theorem 4.3.1, that all digraphs of order 2 have

zero completion to a weakly sign symmetric P+
0,1-matrix.

In Theorem 4.4.1, we wish to classify all digraphs of order 3 for which we have

zero completion to a wssP+
0,1-matrix.

Theorem 4.4.1. A digraph of order 3 has zero completion to a wssP+
0,1-matrix

if it lies in the following list:

D3(0, 1), D3(1, 1), D3(2, 2), D3(2, 3), D3(2, 4), D3(3, 3), D3(6, 1).
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Proof. Zero completion is stronger than wssP+
0,1-completion, and therefore we

will only consider digraphs listed in Theorem 4.3.3.

According to Theorem 4.1.9, incomplete digraphs with a complete sub-digraph

of order 2 don’t have zero completion to a wssP+
0,1-matrix and we therefore rule

out those digraphs from the list in Theorem 4.3.3.

Now, the remaining digraphs are asymmetric digraphs of order 3 having

wssP+
0,1-completion, D3(0, 1) and D3(6, 1), and they are discussed as follows:

Digraph D3(0, 1) is a null digraph and by Theorem 4.1.1, it has zero comple-

tion to a wssP+
0,1-matrix.

Digraph D3(6, 1) is complete since it specifies a complete digraph.

For D3(1, 1), D3(2, 2), D3(2, 3) and D3(2, 4), we will relate with digraph

D2(1, 1). We have earlier shown in Theorem 4.3.1, that D2(1, 1) has zero com-

pletion to a wssP+
0,1-matrix.

DigraphsD3(1, 1), D3(2, 2) andD3(2, 3) of order 3 contains sub-digraphD2(1, 1)

as of order 2 (with vertex 1 and 2) and vertex 3 has a zero out-degree, then by

Lemma 4.1.3, they have zero completion to a weakly sign symmetric P+
0,1-matrix.

Digraph D3(2, 4) of order 3 contain sub-digraph D2(1, 1) of order 2 (with ver-

tex 1 and 2) and vertex 3 has a zero in-degree, then again by Lemma 4.1.3, they

have zero completion to a weakly sign symmetric P+
0,1-matrix.

The only remaining pattern is D3(3, 3).

The partial wssP+
0,1-matrix A =


d1 a12 a13

x21 d2 x23

x31 a32 d3

 specifies D3(3, 3).
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Determinants of Principal Submatrices

detA(1, 2) = d1d2 − a12x21; detA(1, 3) = d1d3 − a13x31;

detA(2, 3) = d2d3 − x23a32;

detA = d1(d2d3 − x23a32)− a12(d3x21 − x23x31) + a13(x21a32 − d2x31).

Perform zero completion by setting all unspecified entries of A to zeros gives:

detA(1, 2) = d1d2 > 0; detA(1, 3) = d1d3 > 0;

detA(2, 3) = d2d3 > 0; detA = d1d2d3 > 0.

Since all the principal minors are positive then digraph D3(3, 3) has zero

completion to a wssP+
0,1-matrix.

By examining the digraphs given in the list in Theorem 4.4.1, we obtain the

following corollary:

Corollary 4.4.2. A digraph of order 3 has zero completion to a wssP+
0,1-matrix

if and only if it is null, complete or is asymmetric and does not contain a 3-cycle.

In Theorem 4.4.3, we wish to classify digraphs of order 4 which have zero

completion to a wssP+
0,1-matrix.

Theorem 4.4.3. A digraph of order 4 has zero completion to a wssP+
0,1-matrix

if and only if it lies in the following list:
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q = 0; n = 1;

q = 1; n = 1;

q = 2; n = 2− 5;

q = 3; n = 4− 11, 13;

q = 4; n = 16− 19, 21− 23, 25− 27;

q = 5; n = 29, 31, 33− 34, 36− 37;

q = 6; n = 46;

q = 12 n = 1.

Proof.

Digraph D4(0, 1) is a null digraph and by Theorem 4.1.1, it has zero comple-

tion to a wssP+
0,1-matrix.

Digraph D4(12, 1) is complete since it specifies a complete digraph.

We will first rule out those incomplete digraphs that have a complete digraph

of order 2 since by Theorem 4.1.9, they don’t have zero completion to a wssP+
0,1-

matrix. Again, zero completion is strong than a wssP+
0,1-completion and therefore

we will discuss patterns that do have wssP+
0,1-completion. From these two condi-

tions, it is now clears that, the only patterns to consider are asymmetric patterns
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that have wssP+
0,1-completion, and are given in the list below.

q = 1;

q = 2; n = 2− 5;

q = 3; n = 4− 11, 13;

q = 4; n = 16− 19, 21− 23, 25− 27;

q = 5; n = 29, 31, 33− 34, 36− 37

q = 6; n = 46.

In order to find out if these digraphs have zero completion to a wssP+
0,1-

matrix, it will be more easy to relate with digraphs of order 3 than computing

their principal minors and assigning zero to all unspecified entries. We have

earlier shown in Theorem 4.4.1 incomplete digraphs of order 3 that have zero

completion to a wssP+
0,1-matrix and we will make use of the digraphs D3(1, 1),

D3(2, 2), D3(2, 3), D3(2, 4) and D3(3, 3) in this subsection.

We will give 5 groups of incomplete digraphs of order 4 that containing any

of the sub-digraphs above as an induced sub-digraphs and has vertex 4 not in the

sub-digraphs having either zero in-degree or out-degree.

Group 1: Each of the digraphs

D4(1, 1), D4(2, 5)

contains D3(1, 1) and has one of the vertex not in D3(1, 1) having either zero

in-degree or out-degree.

Group 2: Each of the digraphs

D4(2, 2), D4(3, 4), D4(3, 9), D4(3, 10), D4(4, 17)

contains D3(2, 2) and has one of the vertex not in D3(2, 2) having either zero

in-degree or out-degree.
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Group 3: Each of the digraphs

D4(2, 4), 4(3, 7), D4(3, 8), D4(4, 19), D4(5, 34)

contains D3(2, 3) and has one of the vertex not in D3(2, 3) having either zero

in-degree or out-degree.

Group 4: Each of the digraphs

D4(2, 3), 4(3, 5), D4(3, 6), D4(3, 11), D4(4, 18)

contains D3(2, 4) and has one of the vertex not in D3(2, 4) having either zero

in-degree or out-degree.

Group 5: Each of the digraphs

D4(3, 13), D4(4, 21), D4(4, 22), D4(4, 23), D4(4, 25), D4(4, 26),

D4(4, 27), D4(5, 29), D4(5, 31), D4(5, 33), D4(5, 36), D4(5, 37), D4(6, 46)

contains D3(3, 3) and has one of the vertex not in D3(3, 3) having either zero

in-degree or out-degree.

Now, since each of the digraph in group 1, 2, 3, 4 and 5 contains a incomplete

sub-digraph of order 3 that has zero completion to a wssP+
0,1-matrix, and one of

the vertex not in the sub-digraph has either zero in-degree or out-degree, then,

by Lemma 4.1.3, all these digraphs have zero completion to a wssP+
0,1-matrix.

The only remaining asymmetric digraph that has wssP+
0,1-completion isD4(4, 16),

we will give the analysis as follows:

We will first assign zeros to all unspecified entries of a partial matrix specifying

D4(4, 16), then compute the principal minors and see if it meets the conditions

of being a wssP+
0,1-matrix.
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Consider a completed wssP+
0,1-matrix Ac =



d1 a12 0 0

0 d2 a23 0

0 0 d3 a34

a41 0 0 d4


of D4(4, 16).

The principal minors of the completed wssP+
0,1-matrix Ac.

detA(1, 2) = d1d2 > 0; detA(1, 3) = d1d3 > 0; detA(1, 4) = d1d4 > 0;

detA(2, 3) = d2d3 > 0; detA(2, 4) = d2d4 > 0; detA(3, 4) = d3d4 > 0;

detA(1, 2, 3) = d1d2d3 > 0; detA(1, 2, 4) = d1d2d4 > 0;

detA(1, 3, 4) = d1d3d4 > 0; detA(2, 3, 4) = d2d3d4 > 0; detA > 0.

All the determinants are positive, then every partial matrix A of D4(4, 16)

can be completed to a wssP+
0,1-matrix by assigning all unspecified entries to zero,

hence the pattern D4(4, 16) has zero completion to a wssP+
0,1-matrix.

By examining the digraphs given in the list in Theorem ??, we obtain the

following corollary:

Corollary 4.4.4. Any asymmetric digraph of order 4 having wssP+
0,1-completion

also has zero completion to a wssP+
0,1-matrix.
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Chapter 5

Summary, conclusion and recom-

mendation
This chapter presents a summary of the key results of the study based on the

research objectives and the conclusions drawn out of these results. The chapter

also presents the recommendations of the study and suggests areas revealed by

the study that require further investigations.

5.1 Summary

The aim of the study was to establish classifications of digraphs specified by

wssP+
0,1-matrices. Recall that digraphs are denoted as Dp(q, n) where p, q and n

denotes number of vertices, number of arcs and the diagram number respectively.

Based on the results of Chapter 4, we have given our classifications for digraphs

up to order 4 as follows:

1. For 1 ≤ p ≤ 4, the digraph Dp(q, n) has zero completion to a wssP+
0,1-matrix

if and only if it lies in the following list:

p = 1; q = 0, n = 1;

p = 2; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1;
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p = 3; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 2− 4;

q = 3, n = 3;

q = 6, n = 1;

p = 4; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 2− 5;

q = 3, n = 4− 11, 13;

q = 4, n = 16− 19, 21− 23, 25− 27.

q = 5, n = 29, 31, 33− 34, 36− 37;

q = 6, n = 46;

q = 12, n = 1.

2. If a digraph Dp(q, n) is in the following list, then it has wssP+
0,1-completion:

p = 1

p = 2; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1;

p = 3; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1− 4;

q = 3, n = 1, 3− 4;

q = 6, n = 1;
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p = 4; q = 0, n = 1;

q = 1, n = 1;

q = 2, n = 1− 5;

q = 3, n = 1− 11, 13;

q = 4, n = 3− 12, 14− 19, 21− 23, 25− 27;

q = 5, n = 8− 10, 14− 16, 22− 24, 26− 29, 31, 33− 34, 36− 37;

q = 6, n = 23, 26, 32, 35, 46;

q = 12, n = 1.

3. If a digraph Dp(q, n) is in the following list, then it does not have wssP+
0,1-

completion:

p = 3; q = 3, n = 2;

q = 4, n = 1− 4;

q = 5, n = 1;

p = 4; q = 3, n = 12;

q = 4, n = 13, 20, 24;

q = 5, n = 6, 11− 13, 18− 20, 25, 30, 32, 35, 38;

q = 6, n = 2, 9− 12, 14, 16, 18, 20− 22, 24− 25, 28− 31,

33− 34, 36− 37, 40− 43, 44− 45, 47− 48;

q = 7, n = 1, 3− 8, 10− 38;

q = 8, n = 1− 27;

q = 9, n = 1− 13;

q = 10, n = 1− 5;

q = 11, n = 1.
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4. If a digraph Dp(q, n) is in the following list, then it has wssP -completion

and does not have wssP+
0,1-completion:

p = 3; q = 4, n = 1, 3, 4;

p = 4; q = 6, n = 2, 40, 43;

q = 7, n = 4, 5, 14, 24, 29, 34, 36;

q = 8, n = 1, 10, 12, 18;

q = 9, n = 8, 11.

5. If a digraphs is in the following list, then it has wssP -completion and not

known whether or not it has wssP+
0,1-completion:

p = 4; q = 4, n = 1− 2;

q = 5, n = 1− 5, 7, 17, 21;

q = 6, n = 1, 3− 8, 13, 15, 17, 19, 27, 38− 39;

q = 7, n = 2, 9.

5.2 Conclusion

The following conclusions were made in relation to the objectives of this study.

Figure 5.1 shows relationships among the sets of patterns having different com-

pletions for partial wssP+
0,1-matrices. Our conclusions will be summarized by the

explanations of Figure 5.1.
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X
A
B

C

Figure 5.1: Relationships among the sets of patterns having completions for
wssP+

0,1-matrices and wssP -matrices.

Key

X: Number of patterns considered.

A: Patterns that have wssP -completion.

B: Patterns that have wssP+
0,1-completion.

C: Patterns that have zero completion to a wssP+
0,1-matrix.

Set X gives the venn space or the boundary for number of digraphs to consider

in a study, most matrix completions considers up to order 4 digraphs which is a

similar case in this study. We have considered digraphs of order 1, 2, 3, and 4

with 1, 3, 16 and 218 non-isomorphic digraphs respectively; they are 238 digraphs

in total. The venn space expands depending on the order of digraphs considered

in a study. Set X has 114 digraphs which are not in set A, those are the set of

digraphs in complement set AC , that is, |Ac| = 114.

The next sets changes depending on the type of completions and their rela-

tionships for digraphs are presented as follows:

First, set A is the set of patterns that have wssP -completion; this the superset

of all the patterns and it was used as restriction for the number of patterns to

consider in this study. The cardinality of this set is 124, that is |A| = 124.

Second, set B is the set of patterns that have wssP+
0,1-completion; this is the

biggest set in this study for which we did not get complete classifications for all

digraphs of up to order 4 and after partial classifications it was found that the
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cardinality of this set is between 79 and 105, that is 79 ≤ |B| ≤ 105.

Third, set C is the set of patterns that have zero completion to a wssP+
0,1-

matrix; this is a special set of B which we have successfully classified all digraphs

of up to order 4 and the cardinality of this set is 44, that is |C| = 44. These are

asymmetric patterns associated with digraphs of at most order 4 having weakly

sign symmetric P -completion.

5.3 Recommendation

Most matrix completion problem research work considers digraphs of up to order

4, in this study we have given complete classifications of digraphs of at most

order 4 having zero completion to a P+
0,1-matrix. On the classifications of digraphs

having wssP+
0,1-completion, we have also considered digraphs of up to order 4 and

we were not able to give complete classifications, and we, therefore, recommend

for a study on the determination of stronger necessary and sufficient conditions

for weakly sign symmetric P+
0,1-completion to classify the remaining 26 digraphs

listed below.

p = 4; q = 4, n = 1− 2;

q = 5, n = 1− 5, 7, 17, 21;

q = 6, n = 1, 3− 8, 13, 15, 17, 19, 27, 38− 39;

q = 7, n = 2, 9.

5.4 Suggestions for further research

The study suggests for similar studies to be conducted on the following classes:

(i) Sign symmetric P0-matrices and positive P0-matrices.

(ii) Nonnegative P0,1-matrices and positive P0,1-matrices.

(iii) Sign symmetric P+
0 -matrices, nonnegative P+

0 -matrices and positive P+
0 -

matrices.
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(iv) Sign symmetric P+
0,1-matrices, nonnegative P+

0,1-matrices and positive P+
0,1-

matrices.

Again we suggest further research on the unclassified patterns for P -matrices and

P+
0,1-matrices classes.
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Appendices

Appendix: Digraphs of at most order 4

We have provided all the non-isomorphic digraphs of order 2, 3 and 4 as given

in (Harary, 1969). This additional information will help the reader in knowing

every digraph used in this study. These digraphs are denoted as Dp(q, n) where

p denotes the number of vertices, q denotes the number of arcs and n denotes

the diagram number for digraphs having same number of vertices and arcs. The

serial number n is important in distinguishing non-isomorphic digraphs having

the same number of vertices and arcs.
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The table below shows digraphs of up to order 5 and respective number of

non-isomorphic digraphs.

Table 1: Digraphs of at most order 4
Number of Number of Non-isomorphic digraphs Non-isomorphic digraphs
vertice(s) p arcs(s) q having q arcs(s) having p vertices(s)
1 0 1 1

2
0 1

31 1
2 1

3

0 1

16

1 1
2 4
3 4
4 4
5 1
6 1

4

0 1

218

1 1
2 5
3 13
4 27
5 38
6 48
7 38
8 27
9 13
10 5
11 1
12 1

5 9608
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Digraphs of order 2

1 2 1 2 1 2

D2(0, 1) D2(1, 1) D2(2, 1)

Digraphs of order 3

1

2

3 1

2

3 1

2

3 1

2

3

D3(0, 1) D3(1, 1) D3(2, 1) D3(2, 2)

1

2

3 1

2

3 1

2

3 1

2

3

D3(2, 3) D3(2, 4) D3(3, 1) D3(3, 2)

1

2

3 1

2

3 1

2

3 1

2

3

D3(3, 3) D3(3, 4) D3(4, 1) D3(4, 2)

1

2

3 1

2

3 1

2

3 1

2

3

D3(4, 3) D3(4, 4) D3(5, 1) D3(6, 1)
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Digraphs of order 4 and at most 3 arcs

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

D4(0, 1) D4(1, 1) D4(2, 1) D4(2, 2)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

D4(2, 3) D4(2, 4) D4(2, 5) D4(3, 1)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

D4(3, 2) D4(3, 3) D4(3, 4) D4(3, 5)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

D4(3, 6) D4(3, 7) D4(3, 8) D4(3, 9)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

D4(3, 10) D4(3, 11) D4(3, 12) D4(3, 13)
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Digraphs of order 4 and 4 arcs

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 1) D4(4, 2) D4(4, 3) D4(4, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 5) D4(4, 6) D4(4, 7) D4(4, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 9) D4(4, 10) D4(4, 11) D4(4, 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 13) D4(4, 14) D4(4, 15) D4(4, 16)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 17) D4(4, 18) D4(4, 19) D4(4, 20)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 21) D4(4, 22) D4(4, 23) D4(4, 24)

1

2 3

4 1

2 3

4 1

2 3

4
D4(4, 25) D4(4, 26) D4(4, 27)
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Digraphs of order 4 and 5 arcs: D4(5, 1− 28)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 1) D4(5, 2) D4(5, 3) D4(5, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 5) D4(5, 6) D4(5, 7) D4(5, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 9) D4(5, 10) D4(5, 11) D4(5, 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 13) D4(5, 14) D4(5, 15) D4(5, 16)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 17) D4(5, 18) D4(5, 19) D4(5, 20)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 21) D4(5, 22) D4(5, 23) D4(5, 24)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 25) D4(5, 26) D4(5, 27) D4(5, 28)
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Digraphs of order 4 and 5 arcs: D4(5, 29− 38)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 29) D4(5, 30) D4(5, 31) D4(5, 32)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(5, 33) D4(5, 34) D4(5, 35) D4(5, 36)

1

2 3

4 1

2 3

4
D4(5, 37) D4(5, 38)

Digraphs of order 4 and 6 arcs: D4(6, 1− 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 1) D4(6, 2) D4(6, 3) D4(6, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 5) D4(6, 6) D4(6, 7) D4(6, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 9) D4(6, 10) D4(6, 11) D4(6, 12)
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Digraphs of order 4 and 6 arcs: D4(6, 13− 40)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 13) D4(6, 14) D4(6, 15) D4(6, 16)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 17) D4(6, 18) D4(6, 19) D4(6, 20)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 21) D4(6, 22) D4(6, 23) D4(6, 24)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 25) D4(6, 26) D4(6, 27) D4(6, 28)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 29) D4(6, 30) D4(6, 31) D4(6, 32)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 33) D4(6, 34) D4(6, 35) D4(6, 36)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 37) D4(6, 38) D4(6, 39) D4(6, 40)
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Digraphs of order 4 and 6 arcs: D4(6, 41− 48)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 41) D4(6, 42) D4(6, 43) D4(6, 44)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(6, 45) D4(6, 46) D4(6, 47) D4(6, 48)

Digraphs of order 4 and 7 arcs: D4(7, 1− 16)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 1) D4(7, 2) D4(7, 3) D4(7, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 5) D4(7, 6) D4(7, 7) D4(7, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 9) D4(7, 10) D4(7, 11) D4(7, 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 13) D4(7, 14) D4(7, 15) D4(7, 16)
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Digraphs of order 4 and 7 arcs: D4(7, 17− 38)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 17) D4(7, 18) D4(7, 19) D4(7, 20)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 21) D4(7, 22) D4(7, 23) D4(7, 24)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 25) D4(7, 26) D4(7, 27) D4(7, 28)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 29) D4(7, 30) D4(7, 31) D4(7, 32)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(7, 33) D4(7, 34) D4(7, 35) D4(7, 36)

1

2 3

4 1

2 3

4
D4(7, 37) D4(7, 38)
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Digraphs of order 4 and 8 arcs

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 1) D4(8, 2) D4(8, 3) D4(8, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 5) D4(8, 6) D4(8, 7) D4(8, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 9) D4(8, 10) D4(8, 11) D4(8, 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 13) D4(8, 14) D4(8, 15) D4(8, 16)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 17) D4(8, 18) D4(8, 19) D4(8, 20)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 21) D4(8, 22) D4(8, 23) D4(8, 24)

1

2 3

4 1

2 3

4 1

2 3

4
D4(8, 25) D4(8, 26) D4(8, 27)
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Digraphs of order 4 and at least 9 arcs

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(9, 1) D4(9, 2) D4(9, 3) D4(9, 4)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(9, 5) D4(9, 6) D4(9, 7) D4(9, 8)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(9, 9) D4(9, 10) D4(9, 11) D4(9, 12)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(9, 13) D4(10, 1) D4(10, 2) D4(10, 3)

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4
D4(10, 4) D4(10, 5) D4(11, 1) D4(12, 1)


