
RESEARCH PROPOSAL

1. Background

The central goal of the proposed research is a proof of Cherlin’s Conjecture for finite binary primitive
groups [5].

Conjecture 1. A finite primitive binary permutation group must be one of the following:

(1) a symmetric group Sym(n) acting naturally on n elements;
(2) a cyclic group of prime order acting regularly on itself;
(3) an affine orthogonal group V · O(V ) with V a vector space over a finite field equipped with an

anisotropic quadratic form, acting on itself by translation, with complement the full orthogonal
group O(V ).

We need to clarify what it means for a group G ≤ Sym(Ω) to be called binary : first, define a pair
(x1, . . . , xN ) and (y1, . . . , yN ) in ΩN to be k-equivalent for some k ≤ N if for every J = {i1, . . . , ik} ⊆
{1, . . . , N} there exists gJ ∈ G such that xgJj = yj for every j ∈ J . Now the relational complexity of
G is defined to be the least k such that whenever two N -tuples are k-equivalent, they are necessarily
N -equivalent (for any integer N ≥ 2); G is called binary if its relational complexity is equal to 2.

Note that an alternative (equivalent) definition of a binary permutation group is given below in Defi-
nition 3; this definition is harder to state but is (as we shall see) more obviously connected to important
questions in the literature.

Cherlin himself gave a proof of the conjecture when G is of “affine type” Wiscons then made use of the
O’Nan–Scott–Aschbacher theorem to study various other cases and showed that Conjecture 1 reduces to
the following statement concerning almost simple groups [25].

Conjecture 2. If G is a finite binary almost simple primitive group on Ω, then G = Sym(Ω).

We propose to work as a three-person investigating team: the PI (Gill, South Wales); the Co-I (Liebeck,
Imperial); and the Visiting Researcher (Spiga; Milano–Bicocca) to prove Conjecture 2 and, by so doing,
to prove Conjecture 1.

1.1. Model theory context. Cherlin’s conjecture arises from model theory considerations rooted in
Lachlan’s theory of finite homogeneous relational structures (see, for instance, [17, 19]).

Here a finite relational structure is a generalization of the notion of a directed graph: a directed graph
can be thought of as a pair (V,E) where V is a finite set of vertices and E is a set of 2-tuples with entries
in V . Now a relational structure R is a tuple (V,R1, . . . , R`) where V is a finite set of vertices and each
relation Ri is a set of ki tuples for some integer ki ≥ 2. For each i = 1, . . . , `, the integer ki is the type of
the relation Ri; the maximum of the integers ki is the type of the structure R.

The structure (V,R1, . . . , R`) is homogeneous if, whenever one has V1, V2 ⊂ V such that the induced
relational structures on V1 and V2 admit an isomorphism ϕ : V → V , then there is an automorphism
θ : V → V such that θ|V1 = ϕ. In other words, the structure is homogeneous if any local symmetry
of the structure extends to a global symmetry. This notion of homogeneity has been studied in many
contexts (graphs, geometries, groups,...); Aschbacher, for instance, calls it “The Witt property ” due to
its connection with some fundamental results of Witt concerning formed spaces [2].

Lachlan’s theory implies the existence of a hierarchy of classification theorems for the universe of
homogeneous relational structures; this hierarchy is parametrized by the type of the structure; thus, for
instance, the first family of theorems in this hierarchy concerns relational structures (V,R1, . . . , R`) of type
2 – these are the binary homogeneous relational structures. Furthermore each family itself is parametrized
by the number of relations in the structure: so the first theorem in the binary family is a result of Lachlan
himself [18] that classifies finite binary relational structures with one relation; in other words finite simple
homogeneous directed graphs.
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It is important to note that Lachlan’s theory does not provide the statement of each of these theorems,
instead it tells us the “form” that each theorem will take. Thus the form of the `-th theorem in the
(k − 1)-th family in the hierarchy asserts “A finite homogeneous relational structure of type k with at
most `-relations lies in one of a number of infinite families, or else is one of a finite number of sporadic
individuals”. And the theory tells us more: namely that each of these sporadic individuals will at some
point crop up in an infinite family in one of the later theorems (i.e. in a theorem from family k′ for some
k′ > k − 1).

Lachlan’s theory, then, concerns the behaviour of “sporadicity” in this universe with respect to the type
parameter. Of course, one would like to know the precise statement of each of these theorems, starting
with the first family, on binary homogeneous relational structures. We shall see in a moment that this
family of theorems is closely linked to the statement of Cherlin’s conjecture.

We should note, finally, that one could turn the hierarchy on its side and, instead of considering families
defined via bounds on type, consider families defined via bounds on the number of relations. This is a
rather different problem and it has received considerable attention in the literature, with one of the most
celebrated results in this direction due to a team including the Co-I [15].

1.2. Group theoretic implications. In the previous section we explained how Lachlan’s theory de-
scribes a “slicing up” of the universe of finite homogeneous relational structures. In [5], Cherlin changes
the perspective of this theory so that it is, instead, seen as a theory concerning the universe of finite
transitive permutation groups.

This change of perspective rests on a definition first proposed in [6].

Definition 3. Suppose that G is a transitive permutation group on a set Ω; we say that a relational
structure R = (Ω, R1, . . . , Rt) is compatible with this action if the action of Aut(R) on Ω is permutation
isomorphic to the action of G on Ω. Now the relational complexity of G is defined to be the minimum
type of a homogeneous relational structure that is compatible with the given action; in particular G is a
binary permutation group if it has relational complexity 2.

It is a simple matter to check that this definition is equivalent to the one given at the start and,
moreover, that when Ω is finite, the relational complexity of the action is a positive integer less than |Ω|.
With this definition, one sees that Lachlan’s hierarchy of classification theorems doesn’t just pick up all
finite homogeneous relational structures, but in fact picks up all finite transitive permutation groups.

It now becomes clear that the first theorem in Lachlan’s hierarchy can be thought of not as a statement
about binary relational structures, but about binary permutation groups. What is more these are precisely
the objects to which Cherlin’s conjecture pertains. However there is one caveat: Cherlin’s conjecture only
describes those binary permutation groups for which the action on vertices is primitive; to obtain the full
statement of Lachlan’s first theorem, one would need to also consider imprimitive actions.

We are almost ready to discuss Cherlin’s conjecture directly, but first we should clarify why the place-
ment of a given permutation group in Lachlan’s hierarachy is so very significant. It is an established
principle of permutation group theory that if a group G acts homogeneously on an object like a relational
structure, then a study of the object in question will throw a searching light on the group G and on the
action; as Aschbacher says, “... in most categories few objects have the Witt property; those that do are
very well behaved indeed.” [2]

Examples of this “homogeneity” avenue into the understanding of group actions include Gardiner,
Sheehan, Enomoto and Lachlan’s classical work on homogeneous graphs [9, 10, 18, 23], as well as variations
including set-homogeneous graphs [14] and k-homogeneous graphs [13]; one also has Devillers’ work
on homogeneous Steiner systems [8] as well as follow-up work by Webb et. al. (see EPSRC grant
EP/M016242/1) and so on. It is also the standard way in to the study of classical groups and polar spaces
via Witt’s Lemma (see the exposition in Aschbacher [2], or in any standard text on these groups and
geometries).

Much of the aforementioned work can be seen as fitting into the scheme outlined by Lachlan. Indeed
Lachlan’s theory brings an “organisation” to these disparate studies of homogeneity, and provides a deep
connection between them.
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1.3. The status of the conjecture. As described at the start, Cherlin’s original conjecture has been
reduced to Conjecture 2, which is a statement about finite almost simple groups. Now the Classification
of Finite Simple Groups tells us that, to prove Conjecture 2, one must deal with three families of groups:
the alternating groups, the sporadic groups, and the groups of Lie type. The first two of these families
have been dealt recently with by the PI, Spiga and various co-authors, and we now describe this work.

Alternating groups. Conjecture 2 was proven for the alternating groups by the PI and Spiga in [12].
The following theorem is the statement we need:

Theorem 4. Let G be a finite almost simple primitive group on Ω with socle an alternating group. If G
is binary, then G = Sym(Ω).

The proof of Theorem 4 rested on the notion of a beautiful subset ; this is a subset Λ of Ω for which
the setwise-stabilizer is 2-transitive but does not contain the Alt(Λ). This idea was developed further in
[11] where it was also connected to a classical concept in group theory, that of 2-closure: the 2-closure of
a permutation group G ≤ Sym(Ω) is the largest subgroup of Sym(Ω) that has the same orbits on Ω× Ω
as G. If G is equal to its 2-closure, then we say that G is 2-closed, and the study of such permutation
groups goes back many years – see, for instance [24].

The connection between 2-closure and Cherlin’s conjecture arises from the fact that if Ω has a subset
Λ for which the setwise stabilizer GΛ is not 2-closed, then the action of G on Ω is not binary. (Beautiful
subsets can now be seen to be examples of subsets for which the setwise stabilizer GΛ is not 2-closed.)

Sporadic groups. Conjecture 2 was proved for the almost simple sporadic groups by Dalla Volta,
the PI and Spiga in [7]. The methods used here were a little different, as the problem was a largely
computational one: there were only finitely many actions to consider and so the problem could be attacked
with the computer algebra system magma [3].

Groups of Lie type. Conjecture 2 remains open for the groups of Lie type, although some progress
has been made. Specifically, the connection between binary actions and 2-closure described above was
exploited by the PI, Hunt and Spiga in [11] to prove Conjecture 2 for almost simple groups of Lie type of
rank 1, i.e. groups with socle PSL2(q), 2B2(q), 2G2(q) or PSU3(q).

We are left with the job of proving Cherlin’s conjecture for finite almost simple groups of Lie type
of rank at least 2. Many of the methods developed in [7, 11, 12] can be applied to this task; indeed
the connection with 2-closure has already been exploited in [12] (via “beautiful subsets”) to resolve the
conjecture for the C1-actions of the classical groups. Thus the efficacy of these methods in this context has
been demonstrated although the task that remains is considerable, and many more ideas will be needed
(see §4 below).

2. Academic Impact

A proof of Conjecture 1 would complete the first major problem that was highlighted in this area by
Cherlin in his 2000 paper [5]. It would also, as described above, represent a significant step towards
proving the first family of theorems proposed by Lachlan in 1986 [19].

Perhaps more significantly the recent progress made by the PI and Spiga into Conjecture 1 have thrown
up a number of techniques that have immediate and obvious application.

Imprimitive actions. The methods developed in [7, 11, 12] rely on primitivity in the weak sense
that the assumption of primitivity allows one to restrict one’s attention to a smaller class of actions: the
primitivity assumption does not enter the analysis of any given action.

To study imprimitive actions, then, one has two options: either one tries to prove some kind of “re-
duction theorem” that allows one to make use of the primitive case. In another direction, one tries to
“organise” imprimitive actions in some sensible way, so that the techniques developed in the primitive
analysis can be applied directly.

To illustrate the latter direction, we refer to a result in [7] pertaining to r`(G), the number of orbits of

G on Ω(`) (here Ω(`) is the set of all `-tuples of distinct elements of Ω):

Lemma 5. If G is transitive and binary, then r`(G) ≤ r2(G)`(`−1)/2 for each 2 ≤ ` ∈ Z.

We believe that this sort of result can be applied effectively to finite imprimitive actions, and in so
doing we have a reasonable prospect of making further progress towards Lachlan’s first theorem.
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Small relational complexity. Again, the new methods have immediate and easy application to the
problem of classifying transitive permutation groups of small relational complexity, for instance weakening
the “binary” assumption in Cherlin’s conjecture to “ternary”. By way of illustration, Lemma 5 has an
analogue in this setting, the statement being “ If G is transitive and ternary, then r`(G) ≤ r3(G)`(`−1)/2

for each 3 ≤ ` ∈ Z.” Another example pertains to the connection between “binariness” and 2-closure
discussed above; one has an analogous connection between “ternariness” and 3-closure, and so on.

These insights open up the possibility of being able to populate the lower tiers of Lachlan’s hierarchy
in a reasonably complete manner. The insight this could yield into the study of permutation groups is
significant: it would efficiently associate structures with each permutation group such that the group
acts homogeneously; it would allow us to understand this process by which sporadic examples become
absorbed into infinite families (one naturally wonders, for instance, about the rate at which this happens).

Calculating relational complexity for important families. The calculation of the precise value of
the relational complexity of any given group action can be surprising delicate and difficult. Even obtaining
tight bounds has proved a difficult task. To appreciate the technical hurdles that such calculations throw
up, we refer to [6] where an exact formula is given for the action of Sym(n) on k-subsets of {1, . . . , n}, as
well as various bounds for the actions of certain wreath products.

There are many well-studied families of permutation groups for which there do not exist any non-trivial
bounds on the relational complexity. One naturally wonders, for instance, about the actions of the finite
classical groups on their associated projective/ polar spaces: [12, Theorem B] gives a lower bound of 3 for
these actions (unless G ∼= PGL2(4)), and there is some discussion of how to improve this lower bound to
4. This seems unsatisfactory though: surely one should be able to establish a lower bound as a function
of the rank and field. And, likewise, for an upper bound.

2.1. Collaboration. The proposed team of three researchers – Gill, Liebeck and Spiga – has all of the
necessary expertise to write a proof of Conjecture 1.

Specifically, Gill and Spiga have led the recent progress in resolving Conjecture 1 by exploiting the
Classification of Finite Simple Groups. They have developed the new methods that allow one to under-
stand relational complexity using classical notions from permutation group theory like 2-closure, bounds
on r`(G), the structure of subset stabilizers and so on. More such connections will need to be made to
close out the proof, and Gill and Spiga are in the optimal position to make these advances.

The progress made by Gill and Spiga means that Conjecture 1 has been reduced to a question about
the primitive actions of the finite groups of Lie type. Liebeck is one of the preeminent authorities in this
area: the book [16] is the definitive text on these actions for the case where the group is classical; if the
group is exceptional, then Liebeck’s work with Seitz is the basis for our current understanding (see, for
instance [22], and the references therein).

In short, the expertise brought by the team is tailor-made to achieve our stated goal.

3. Research Hypothesis and Objectives

The timeliness of the proposed research is illustrated by the recent progress made by the PI and Spiga:
the question of classifying binary permutation groups has been open since relational complexity was first
defined in 1996. Progress towards this goal was frustratingly slow until, first, Cherlin dealt with the affine
case, second, Wiscons provided the important reduction to almost simple groups and, third, the PI and
Co-I were able to use the Classification of Finite Simple Groups to effectively address what remains. We
have arrived at the point where completing a full proof of Conjecture 1 is a reasonable prospect.

The novelty of the proposed approach is in its combination of a known successful strategy (the methods
developed in [7, 11, 12]) combined with a deep understanding of the theory of the finite simple groups,
focusing specifically on the almost simple groups of lie type.

We feel very confident that we can deliver our primary goal, a proof of Cherlin’s conjecture; we are
confident, too, that the extensions described in §2 will transform the study of relational complexity from
a frustrating collection of intractable calculations into the field that it promises to be: a rich source of
insight into the structure of finite permutation groups.
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4. Programme and Methodology

The proposed research is of a pure mathematical nature, so will proceed through the careful application
of new methods for binary groups together with the technical theory of finite groups of Lie type.

Studying the primitive actions of these groups amounts to studying their maximal subgroups. This
allows the programme to split naturally into a number of components.

4.1. Classical groups: geometric actions. The maximal subgroups of the almost simple classical
groups were classified by Aschbacher [1] into nine families; this classification was then refined by Kleidman
and the Co-I [16].

The first eight families in this classification are all defined with respect to the action of the group on
its associated natural module. These are the “geometric actions”, they are all explicitly described and
their complete structure is understood. One of these families has already been dealt with in [12] – the C1

family – and it is expected that the methods used there (“beautiful subsets”) will carry over directly in
many settings. The following statement, for instance, can be deduced using the methods of [12]: Let G be
an almost simple primitive permutation group on the set Ω with socle isomorphic to PSLn(q) with n ≥ 3.
Then all of the C2 actions admit beautiful subsets and so are not binary.

Many of the other cases are much less straightforward: for instance the C3 family in PSLn(q) includes
the normalizers of Singer cycles. The corresponding actions do not admit beautiful subsets in general,
and so new and different methods will be needed.

4.2. Classical groups: C9 actions. The final family in Aschbacher’s classification consists of almost
simple groups embedded irreducibly in our classical group. Here the classification is less explicit, and one
must bring to bear techniques from representation theory to limit the number of possible actions.

Instead of dealing with these actions one at a time, one must try and leverage the irreducibility of
the embedding to yield general information. This has been done in many contexts so that we now, for
instance, have a lot of information about the size of the C9-subgroups [20], the number of conjugacy classes
of the C9-subgroups [21], fixed-point ratios [4] and so on. The aim is to combine this kind of information
with appropriate sufficient conditions for an action to be non-binary in order to obtain the result; this is
reminiscent of the fixed-point arguments that were combined with [12, Lemma 3.7] to deal with certain
primitive actions of the alternating groups.

4.3. Exceptionals. The primitive actions of the almost simple exceptional groups are classified similarly
to the classicals in that there is a natural split between geometric subgroups and almost simple subgroups.
The advantage one has here, though, is that rank is bounded in the exceptionals and so one can (in theory)
write down explicitly all of the irreducible almost simple subgroups for each family of exceptional groups.
This has not quite been achieved – there are some possible subgroups for which embeddings are either
not known or not fully understood.

The first task with the exceptional groups is to deal with the parabolic subgroups which we expect to
yield to the same approach as was taken to the classical parabolic subgroups in [12]. After this, the task is
much less straightforward as it can be very difficult to “get one’s hands on” subgroups of the exceptional
groups; we will need to combine a good technical understanding of these subgroups, along with significant
new ideas concerning binary actions.

5. National Importance

The proposed research fits within the Mathematical Sciences section of the EPSRC portfolio and, within
this, in the Algebra theme. Moreover, as we have seen, there are strong connections to the theme of Logic
and combinatorics. Indeed, given its intellectual ancestry in Lachlan’s model theory and its strong and
concrete connection to permutation group theory, the proposed research stands to be of significant interest
to a wide community of mathematicians.

The study of permutation group theory has a long history with connections to every area of math-
ematics. In particular, a large number of mathematicians have focused on questions pertaining to the
“homogeneity” of particular actions; we mention, for example Evans (Imperial), Gray (East Anglia),
Macpherson (Leeds), Praeger (Western Australia), Tent (Münster).
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The model-theoretic study of “classification of structures” (of which this work forms a part) has at-
tracted the attention of many famous individuals, including Cherlin himself (Rutgers), Hrushovski (Oxford
and Jerusalem), and Shelah (Rutgers and Jerusalem; note that Lachlan’s work on relational structures
can be thought of as an application of various insights of Shelah). Progress with Cherlin’s conjecture will
be of interest to all of these individuals, and others across the model theory community.

We should emphasise that the connections between permutation group theory and model theory have
proved fruitful in the past and has been of particular interest in UK mathematics, thanks in no small part
to the work of the Co-I (see, for instance, his collaborations with Macpherson (Leeds)). Problems to do
with homogeneous structures have been a regular focus in meetings across the UK: for instance the 2011
four day meeting in Leeds and, very recently, the Dame Kathleen Ollerenshaw Combinatorics Day at the
University of Manchester in July 2017. This last meeting was devoted entirely to Cherlin’s conjecture,
including a focus on the recent progress of the PI and Spiga.
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TRACK RECORD

The proposed research area is in the area of finite group theory. The main focus of the research is
to prove what remains of Cherlin’s conjecture for primitive binary permutation groups. This conjecture
proposes a classification of those primitive permutation groups that have relational complexity equal to
2. Due to work of Cherlin himself and Wiscons, the conjecture reduces to a question concerning almost
simple groups.

The proposed three-person research team – the PI (Gill), the Co-I (Liebeck), and the Visiting Researcher
(Spiga) – is ideally equipped: all three are experienced researchers in finite group theory with specific
expertise giving the best possible chance of achieving the stated goal.

The PI and Spiga’s results on Cherlin’s Conjecture. An almost simple group is a finite group
that has a unique minimal normal subgroup N and such that N is a non-abelian simple group. The
Classification of Finite Simple Groups asserts that N must be either alternating, sporadic or a finite
group of Lie type. Thus, to prove Cherlin’s conjecture one must deal with each of these families in turn.

The PI and Spiga (along with various co-authors) have already made considerable progress: in [4] they
deal with the case where N is alternating; in [2] they deal with the case where N is alternating; finally in
[3, 4] two significant subcases of the groups of Lie type are dealt with.

The three just-cited papers represent the most significant current contribution to our understanding
of the relational complexity of actions of finite simple groups. Because the structure of the finite simple
groups varies dramatically from family to family, these papers each required substantial new perspectives
on the notion of relational complexity for finite permutation groups; these new perspectives were then
applied to the families in question, tailored to deal with the technical obstacles inherent in dealing with
these difficult groups.

These results of the PI and Spiga already represent success stories in this area. They give solid evidence
that the PI and Spiga are well-placed to deal the remaining family – the finite groups of Lie type – and
to thereby complete a full proof of the conjecture.

The Co-I’s work on the finite groups of Lie type. The primary obstacle to completing the proof of
Cherlin’s conjecture is likely to be the technical difficulty of handling the finite groups of Lie type. The
Co-I has a track-record of world-class research in this area.

Understanding the primitive actions of the finite groups of Lie type is equivalent to understanding the
structure of their maximal subgroups. This task splits naturally into two parts, according to whether the
group of Lie type is classical or exceptional.

In the classical case, the original structure statement is due to Aschbacher [1]. The definitive work
on this structure statement is due to the Co-I and Kleidman [6]; in this work they sharpen and extend
Aschbacher’s result, giving forensic detail concerning the structure and behaviour of the subgroups in
question. This work will be the foundation on which the proposed treatment of the classical groups is
built (and, indeed, the partial case already dealt with by the PI and Spiga in [4] uses the framework given
in [6]).

In the exceptional case, the original structure statement (an analogue of the aforementioned result of
Aschbacher) is due to the Co-I and Seitz [7]. A great deal of work has since gone in to sharpening this
result until it reaches the level of detail found in [6] for the classicals; this work has been led by the Co-I
and Seitz, and is spread over a variety of articles; a summary can be found in, for instance, [8].

The Co-I’s work in model theory. As alluded to in the description of the proposed research, Cherlin’s
conjecture can be thought of as a natural complement to existing work in the literature that seeks to
understand homogeneous actions on relational structures where the number of types in the structure
is limited. In this direction one of the most significant results in the literature is due to the Co-I and
co-authors [5].
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As well as being complementary in perspective, this result is note-worthy here as it involves similar
techniques to those proposed in this project: the Classification of Finite Simple Groups is used to “de-
construct” an otherwise intractible problem into a series of smaller problems that can be attacked using
a technical understanding of specific families of permutation groups. The success of the Co-I in this
endeavour is additional solid evidence of success in this area.

General track record. The proposed three-person team has a strong general track record of research
in group theory, over and above the directly relevant research mentioned above.

The PI (Gill) has contributed to the study of permutation group actions on finite geometries (espe-
cially finite projective planes and designs); he has worked on “growth in groups” following on from the
breakthrough work of Helfgott; he has worked on “width” questions in groups together with Pyber and
others, and inspired by a conjecture due to the Co-I, Nikolov and Shalev; more recently, he has helped to
develop a new theory of “Conway groupoids” inspired by Conway’s famous M13-construction. All of this
research lies in the realm of finite group theory, with much of it making use of the Classification of Finite
Simple Groups.

The Co-I (Liebeck) has been one of the leaders in the study of the subgroup structure of the finite
simple groups over the past three decades. He is one of the pioneers of modern probabilistic group theory,
particularly in its application to simple groups, and has achieved some spectacular recent applications of
representation theory, such as the proof of the 60 year old Ore conjecture.

The Visiting Researcher (Spiga) is one of the most prominent researchers in the study of group actions
on graphs and on other combinatorial objects. His main expertise is within finite primitive groups and
applications of the O’Nan-Scott-Aschbacher theorem for investigating symmetries of combinatorial struc-
tures. Combining the recent developments in subgroup growth with p-local analysis in simple groups, he
has proved some important special cases of the 50 year old Weiss conjecture on locally primitive graphs.

Institutional support. Both the Co-I (Imperial) and the Visiting Researcher (Milano-Bicocca) are
supported by institutions with a strong track record of research in algebra; we mention in particular
Britnell, Evans, Ivanov, Schedler (Imperial) and Dalla Volta, Di Martino, Weigel, Passotti (Milano-
Bicocca), all of whom are well-established researchers in algebra.

The University of South Wales, which supports the PI, does not have the same strong track record in
algebra, although that has started to change since the PI obtained an EPSRC First Grant: the PI and
Hunt (also of South Wales) have collaborated with Spiga in [3] (this work is discussed in the Proposed
Research document); in addition, South Wales have funded a PhD in support of the successful First Grant
bid, and have committed to do the same in the event of the current proposal being successful.

References

[1] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math., 76(3):469–514, 1984.
[2] F. Dalla Volta, N. Gill, and P. Spiga. Cherlin’s conjecture for sporadic simple groups. 2017. Preprint available on the

Math arXiv: https://arxiv.org/pdf/1705.05150.
[3] N. Gill, F. Hunt, and P. Spiga. Cherlin’s conjecture for almost simple groups of Lie rank 1. 2017. Preprint available on

the Math arXiv: https://arxiv.org/pdf/1705.01344.
[4] N. Gill and P. Spiga. Binary permutation groups: alternating and classical groups. 2016. Preprint available on the Math

arXiv: https://arxiv.org/abs/1610.01792.
[5] W.M. Kantor, Martin W. Liebeck, and H.D. Macpherson. ℵ0-categorical structures smoothly approximated by finite

substructures. Proc. Lond. Math. Soc. (3), 59(3):439–463, 1989.
[6] P. Kleidman and M. Liebeck. The subgroup structure of the finite classical groups, volume 129 of London Mathematical

Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
[7] Martin W. Liebeck and Gary M. Seitz. Maximal subgroups of exceptional groups of Lie type, finite and algebraic. Geom.

Dedicata, 35(1-3):353–387, 1990.
[8] Martin W. Liebeck and Gary M. Seitz. A survey of maximal subgroups of exceptional groups of Lie type. In Groups,

combinatorics and geometry. Proceedings of the L. M. S. Durham symposium, Durham, UK, July 16–26, 2001, pages
139–146. River Edge, NJ: World Scientific, 2003.

https://arxiv.org/pdf/1705.05150
https://arxiv.org/pdf/1705.01344
https://arxiv.org/abs/1610.01792

