
EXERCISE SHEET 1 WITH SOLUTIONS

(E8) Prove that, given a transitive action of G on Ω, there exists a subgroup H ≤ G such
that the action of G on Ω is isomorphic to the action of G on H\G. You may need
to recall what it means for two group actions to be isomorphic.

Answer. Let ω ∈ Ω and set H := Gω. Define

f : Ω→ H\G,ω1 7→ Hg1

where ωg1 = ω1. It is clear that f is well-defined and bijective. Now observe that,
for ω1 ∈ Ω and g ∈ G,

f(ωg1) = f(ωg1g) = Hg1g = (Hg1)g = (f(ω1))g.

The result follows.

(E12) Let G be a finite group acting transitively on a set Ω. Show that the average number
of fixed points of the elements of G is 1, i.e.

1

|G|
∑
g∈G

|{ω ∈ Ω | ωg = ω}| = 1.

Answer. Consider the set

Λ := {(ω, g) ∈ Ω×G | ωg = g}.
We count |Λ| in two different ways. Observe that there are |Ω| possibilities for
the first entry, and for each such entry there are |Gω| possibilities for the second
entry. On the other hand there are |G| possibilities for the second entry and, for
each such entry there are d possibilities for the first entry. (Here we write d for
the average number of fixed points of elements in G.) We conclude that

|Ω| · |Gω| = |G| · d.
Now the orbit-stabilizer theorem yields the result.

(E14) For which values of n is the action of D2n on an n-gon, 2-transitive?

Answer. In order to be 2-transitive, D2n must be transitive on pairs of distinct
vertices, a set of size n(n − 1). Thus a necessary condition for 2-transitivity is
that n(n − 1) divides |D2n| = 2n. We conclude that the only possible value for
n is 3. It is easy to verify that when n = 3, the action is, indeed 2-transitive.
(Indeed it is 3-transitive!)

(E19) Prove that G acts primitively on Ω if and only if G acts transitively and any stabilizer,
Gω, is a maximal subgroup of G.
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Answer. That primitivity implies transitivity is obvious, since orbits are G-
congruences.

Now suppose that ∼ is a non-trivial G-congruence and let Λ be a block of
imprimitivity for ∼ containing a point ω. Now define

GΛ := {g ∈ G | λg ∈ Λ for all g ∈ G}.
Clearly GΛ is a group and it contains Gω.

Note first that if GΛ = G, then Λ = Ω which contradicts the fact that ∼ is non-
trivial. On the other hand, since ∼ is non-trivial there exists ω1 ∈ Λ\{ω} and,
since G is transitive, there exists g ∈ G such that ωg = ω1. Since GΛ contains g
we conclude that Gω is a proper subgroup of GΛ as required.

On the other hand suppose that Gω < H < G for some subgroup H. We must
show that G acts imprimitively. We define an equivalence relation ∼ on Ω as
follows:

α ∼ β ⇐⇒ Gα, Gβ < Hg,∃g ∈ G.
It is easy to see that ∼ is well-defined; we must show it is non-trivial. If there

is one equivalence class, then H is transitive and contains GΩ, hence H = G,
a contradiction. If all equivalence classes are singletons, then no element of H
moves ω and so Gω = H, a contradiction. We are done.

(E21) Use Iwasawa’s criterion to show that An is simple for n ≥ 5. Hint: consider the
action on unordered triples from {1, . . . , n}.

Answer. I’ll just prove the result for n ≥ 7. The other cases can be done
directly.

Let Λ be the set of all unordered triples from {1, . . . , n}, and consider the
natural action of G = An on Λ given by

{λ1, λ2, λ3}g := {λg1, λ
g
2, λ

g
3}.

It is easy to see that this action is faithful.
It is easy to see that the stabilizer of a point λ in Λ is isomorphic to (S3 ×

Sn−3) ∩ An.
Claim: The 3-cycles generate An if n ≥ 4.

Proof of claim: Any element of An can be written as a product of an even
number of transpositions. We claim that any pair of transpositions in such a
product can be replaced by one or two 3-cycles. There are two cases.

– The transpositions move distinct points. But then we use the fact that

(1, 2, 3)(1, 2, 4) = (1, 3)(2, 4).

– The transpositions have one point in common. But then we use the fact

(1, 2, 3) = (1, 2)(2, 3).

Claim: If n ≥ 7, then the stabilizer of a point in Λ is maximal in An. In
particular G acts on Λ primitively.
Proof of claim: Let H be the stabilizer of {1, 2, 3} ∈ Λ and notice that H
has orbits {1, 2, 3} and {4, . . . , n} in the action on {1, . . . , n}. Any elements that
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normalizes H must either fix these orbits, of permute them. But since they are
of different sizes, we conclude that an element must fix the orbits, and hence lies
in H, i.e. NG(H) = H.

Let H < M ≤ G. Since NG(H) = H we conclude that M contains a distinct
conjugate of H. This conjugate must contain a 3-cycle containing at least one
element from {1, 2, 3} and at least one element from {4, . . . , n}. Without loss of
generality, we may assume that the 3-cycle is (1, 2, 4) or (1, 4, 5).

In the former case it is easy to see that M contains Alt({1, 2, 3, 4}), the alter-
nating group on {1, 2, 3, 4}. With slightly more work one can see, in the second
case that M contains Alt({1, 2, 3, 4, 5}). Now we induct. Suppose that M con-
tains Alt({1, . . . , k}). It is obvious that the stabilizer in M of {1, . . . , k + 1} is
transitive on {1, . . . , k+ 1}, and so M contains Alt({1, . . . , k+ 1}). We conclude
that M = G as required.
Claim: The stabilizer of {1, 2, 3} has a normal abelian subgroup whose normal

closure is G.
Proof of Claim: The subgroup 〈(1, 2, 3)〉 is obviously normal and abelian. Its
normal closure is G by virtue of the fact that it contains a 3-cycle, that all 3-cycles
are conjugate, and that the 3-cycles generate G.

Claim: An is perfect for n ≥ 5.
Proof of Claim: We need only show that G′ contains a 3-cycle. But this follows
from

(2, 5, 1)(3, 2, 4)(1, 5, 2)(4, 2, 3) = (2, 5, 4).

Now the result follows by Iwasawa’s Criterion.

(E22) Prove the following variant on Iwasawa’s criterion: Suppose that G is a finite perfect
group acting faithfully and primitively on a set Ω, and suppose that the stabilizer of
a point has a normal soluble subgroup S, whose conjugates generate G. Then G is
simple.

Answer. Let K be a normal non-trivial subgroup of G. Lemma 2 of lectures
implies, therefore, that K acts transitively on Ω and hence G = GωK. Thus, for
all g ∈ G, there exists g1 ∈ Gω, k ∈ K such that g = g1k and this implies, in
particular, that

{Sg | g ∈ G} = {Sk | k ∈ K}.
Now, since 〈Sk | k ∈ K〉 ≤ SK ≤ G we conclude that G = SK. Then

G/K = SK/K ∼= S/S ∩K.
Since the right hand side is a quotient of a solvable group it must itself be solvable,
and we conclude that G/K is solvable. Since the derived series of a solvable group
terminates at {1} we conclude that either G/K is trivial (and we are done) or
G/K is not perfect, i.e. G/K has an abelian quotient. But the latter implies that
G has an abelian quotient which contradicts the fact that G is perfect.

(E23) Check that the definition of a semi-direct product given in lectures gives a well-defined
group. If φ is the trivial homomorphism, what is K oφ H?



4 EXERCISE SHEET 1 WITH SOLUTIONS

Answer. Group multiplication was given by

(h1, k1)(h2, k2) = (h1 · h2, k
φ(h2)
1 · k2).

Closure is clear. I will leave associativity for the bracket fanatic. Observe
that (1, 1) is an identity element and that the inverse of (h1, k1) is given by

(h−1
1 , (k

φ(h−1
1 )

1 )−1).

(E24) Prove Lemma 4 from lectures.

Answer. This is Theorem 9.9 of Rose’s A course on group theory. Or can be
found in any standard book on group theory.

(E29) Show that Vandermonde’s Theorem does not hold in the octonions, H.

Answer. Take f(X) = X2 + 1. Then i, j and k are all roots of f .

(E30) Show that X2+1 ∈ F3[X] is irreducible, and compute the addition and multiplication
tables for F9 := F3[x]/〈X2 + 1〉.

Answer. If X2 + 1 were reducible it would have a root, but it doesn’t. An
addition table is hardly necessary as one just does normal polynomial addition.
Multiplication is the interesting one. I write a + bα for a + bX + 〈X2 + 1〉 in
F3[x]/〈X2 + 1〉.

0 1 2 α α + 1 α + 2 2α 2α + 1 2α + 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 α α + 1 α + 2 2α 2α + 1 2α + 2
2 0 2 1 2α 2α + 1 2α + 1 α α + 2 α + 1
α 0 α 2α 2 α + 2 2α + 2 1 α + 1 2α + 1

α + 1 0 α + 1 2α + 2 α + 2 2α 1 2α + 1 2 α
α + 2 0 α + 2 2α + 1 2α + 2 1 α α + 1 2α 2

2α 0 2α α 1 2α + 1 α + 1 2 2α + 2 α + 2
2α + 1 0 2α + 1 α + 2 α + 1 2 2α 2α + 2 α 1
2α + 2 0 2α + 2 α + 1 2α + 1 α 2 α + 2 1 2α

(E31) Show that X3 + X + 1 ∈ F2[X] is irreducible, and compute the addition and multi-
plication tables for F8 = F2[x]/〈X3 +X + 1〉.

Answer. Same method as the previous. I’ll do this on request (I’m losing the
will to live).

(E32) Fix a basis B of V . Prove that any semilinear transformation on V is a composition
of a linear transformation and a field automorphism of V with respect to B.
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Answer. Define T0 := α−1T where α is the associated automorphism of T . It
is sufficient to prove that T0 is linear. It is clearly additive. What is more if c ∈ k
and v ∈ V , then

(cv)T0 = (cα
−1

vα
−1

)T = (cα
−1

)α(vα
−1

)T ) = cvT0.

We are done.

(E33) Prove that ΓLn(k) ∼= GLn(k) oφ Aut(k). You will need to choose an appropriate
homomorphism φ : Aut(k) → Aut(GLn(K)) to make this work. You may find it
convenient to fix a basis for V – so you can express elements of GLn(k) as matrices
– before you choose φ.

Answer. Observe that H, the set of field automorphisms of V is a subgroup
of ΓLn(k) isomorphic to Aut(k).

Claim: H ∩GLn(k) = {1}
Proof of claim: Observe that H fixes all of the vectors whose entries are either
1 or 0. The only elements of GLn(k) that do this are scalar multiples of 1. Now
consider a vector v = (α, 1, . . . , 1). Any element of H that moves α will map v
to a vector that is not a scalar multiple of v. Since every non-trivial element of
H moves some non-zero element of k, the claim follows.

This claim, and (E32), implies that every element of G has a unique represen-
tation as αT where T ∈ GLn(k) and α ∈ Aut(k).
Claim: GLn(k) is a normal subgroup of ΓLn(k).

Proof of claim: Let T ∈ GLn(k) and let α be a field automorphism of V . Let
c ∈ k, v ∈ V and observe that

(cv)α−1Tα = (cα
−1

vα
−1

)Tα = ((cα
−1

)(vα
−1

T ))α = c(vα
−1

Tα).

Thus α−1Tα is linear and the claim follows.
This claim yields an automorphismH → Aut(GLn(k)) given by the conjugation

action of H on GLn(k). Now given two elements g1, g2 ∈ ΓLn(k) we can write
them as T1α1 and T2α2 and obtain that

(α1T1)(α2T2) = (α1α2)(α−1
2 T1α2T2) = α1α2T

φ(α2)
1 T2

and we are done.


