EXERCISE SHEET 1 WITH SOLUTIONS

(E8) Prove that, given a transitive action of G on €2, there exists a subgroup H < G such
that the action of G on € is isomorphic to the action of G on H\G. You may need
to recall what it means for two group actions to be isomorphic.

Answer. Let w € ) and set H := (,,. Define
f Q) — H\G,w1 — Hgl

where w9 = w;. It is clear that f is well-defined and bijective. Now observe that,
for w; € Q and g € G,

flwi) = f(w") = Hgrg = (Hg1)g = (f(w1))".

The result follows.

(E12) Let G be a finite group acting transitively on a set 2. Show that the average number
of fixed points of the elements of G is 1, i.e.

EZ|{wGQ|w9:w}|:1.

geG

1
|G

Answer. Consider the set
A ={(w,g9) € AxG|w =g}

We count |A| in two different ways. Observe that there are || possibilities for
the first entry, and for each such entry there are |G, | possibilities for the second
entry. On the other hand there are |G| possibilities for the second entry and, for
each such entry there are d possibilities for the first entry. (Here we write d for
the average number of fixed points of elements in GG.) We conclude that

Q- |G| = |G - d.
Now the orbit-stabilizer theorem yields the result.

(E14) For which values of n is the action of Dy, on an n-gon, 2-transitive?

Answer. In order to be 2-transitive, D, must be transitive on pairs of distinct
vertices, a set of size n(n — 1). Thus a necessary condition for 2-transitivity is
that n(n — 1) divides |Da,| = 2n. We conclude that the only possible value for
n is 3. It is easy to verify that when n = 3, the action is, indeed 2-transitive.
(Indeed it is 3-transitive!)

(E19) Prove that G acts primitively on €2 if and only if G acts transitively and any stabilizer,

G, is a maximal subgroup of G.
1
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Answer. That primitivity implies transitivity is obvious, since orbits are G-
congruences.

Now suppose that ~ is a non-trivial G-congruence and let A be a block of
imprimitivity for ~ containing a point w. Now define

Gr:={ge€G|NeAforall g e G}.

Clearly G, is a group and it contains G,,.

Note first that if Gy = G, then A = Q) which contradicts the fact that ~ is non-
trivial. On the other hand, since ~ is non-trivial there exists w; € A\{w} and,
since G is transitive, there exists g € G such that w? = w;. Since G contains g
we conclude that GG, is a proper subgroup of G as required.

On the other hand suppose that G, < H < G for some subgroup H. We must
show that G acts imprimitively. We define an equivalence relation ~ on {2 as
follows:

a~f— G, Gsg < H dg €.

It is easy to see that ~ is well-defined; we must show it is non-trivial. If there
is one equivalence class, then H is transitive and contains Ggq, hence H = G,
a contradiction. If all equivalence classes are singletons, then no element of H
moves w and so G, = H, a contradiction. We are done.

(E21) Use Iwasawa’s criterion to show that A, is simple for n > 5. Hint: consider the
action on unordered triples from {1,... n}.

Answer. [I’ll just prove the result for n > 7. The other cases can be done
directly.

Let A be the set of all unordered triples from {1,...,n}, and consider the
natural action of G = A, on A given by

{)\17 )\27 )\3}9 = {)\gﬂ )\52]7 )\g}

It is easy to see that this action is faithful.

It is easy to see that the stabilizer of a point A in A is isomorphic to (S5 X
Sp_3) N A,.

Claim: The 3-cycles generate A, if n > 4.
Proof of claim: Any element of A, can be written as a product of an even
number of transpositions. We claim that any pair of transpositions in such a
product can be replaced by one or two 3-cycles. There are two cases.

— The transpositions move distinct points. But then we use the fact that

(1,2,3)(1,2,4) = (1,3)(2,4).
— The transpositions have one point in common. But then we use the fact
(1,2,3) = (1,2)(2,3).

Claim: If n > 7, then the stabilizer of a point in A is maximal in A,. In
particular G acts on A primitively.
Proof of claim: Let H be the stabilizer of {1,2,3} € A and notice that H
has orbits {1,2,3} and {4,...,n} in the action on {1,...,n}. Any elements that
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normalizes H must either fix these orbits, of permute them. But since they are
of different sizes, we conclude that an element must fix the orbits, and hence lies
in H,ie. Ng(H)=H.

Let H < M < @G. Since Ng(H) = H we conclude that M contains a distinct
conjugate of H. This conjugate must contain a 3-cycle containing at least one
element from {1,2,3} and at least one element from {4,...,n}. Without loss of
generality, we may assume that the 3-cycle is (1,2,4) or (1,4,5).

In the former case it is easy to see that M contains Alt({1,2,3,4}), the alter-
nating group on {1,2,3,4}. With slightly more work one can see, in the second
case that M contains Alt({1,2,3,4,5}). Now we induct. Suppose that M con-
tains Alt({1,...,k}). It is obvious that the stabilizer in M of {1,...,k+ 1} is
transitive on {1,...,k+ 1}, and so M contains Alt({1,...,k+1}). We conclude
that M = G as required.

Claim: The stabilizer of {1,2, 3} has a normal abelian subgroup whose normal
closure is G.

Proof of Claim: The subgroup ((1,2,3)) is obviously normal and abelian. Its
normal closure is GG by virtue of the fact that it contains a 3-cycle, that all 3-cycles
are conjugate, and that the 3-cycles generate G.

Claim: A, is perfect for n > 5.

Proof of Claim: We need only show that G’ contains a 3-cycle. But this follows
from
(2,5,1)(3,2,4)(1,5,2)(4,2,3) = (2,5,4).

Now the result follows by Iwasawa’s Criterion.

(E22) Prove the following variant on Iwasawa’s criterion: Suppose that G is a finite perfect
group acting faithfully and primitively on a set €2, and suppose that the stabilizer of
a point has a normal soluble subgroup S, whose conjugates generate G. Then G is
simple.

Answer. Let K be a normal non-trivial subgroup of G. Lemma 2 of lectures
implies, therefore, that K acts transitively on 2 and hence G = G, K. Thus, for
all g € G, there exists g1 € G,k € K such that ¢ = g1k and this implies, in
particular, that

{S9|ge G} ={S"| ke K}.
Now, since (S* | k € K) < SK < G we conclude that G = SK. Then
G/K =SK/K=S/SNK.

Since the right hand side is a quotient of a solvable group it must itself be solvable,
and we conclude that G/K is solvable. Since the derived series of a solvable group
terminates at {1} we conclude that either G/K is trivial (and we are done) or
G /K is not perfect, i.e. G/K has an abelian quotient. But the latter implies that
G has an abelian quotient which contradicts the fact that G is perfect.

(E23) Check that the definition of a semi-direct product given in lectures gives a well-defined
group. If ¢ is the trivial homomorphism, what is K x4 H?
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Answer. Group multiplication was given by
(hy, kr) (hay ha) = (hy = ho, k9™ - hy).

Closure is clear. 1 will leave associativity for the bracket fanatic. Observe
that (1,1) is an identity element and that the inverse of (hi,k;) is given by

_ dhTH)\ _
(At (k7).

(E24) Prove Lemma 4 from lectures.

Answer. This is Theorem 9.9 of Rose’s A course on group theory. Or can be
found in any standard book on group theory.

(E29) Show that Vandermonde’s Theorem does not hold in the octonions, H.

Answer. Take f(X) = X?+ 1. Then 4,j and k are all roots of f.

(E30) Show that X%2+41 € F3[X] is irreducible, and compute the addition and multiplication
tables for Fy := Fs[z] /(X2 + 1).

Answer. If X2 + 1 were reducible it would have a root, but it doesn’t. An
addition table is hardly necessary as one just does normal polynomial addition.
Multiplication is the interesting one. I write a + ba for a + bX + (X% 4+ 1) in
Fa[z] /(X% + 1).

0 1 2 o a+1l a+2 2a 2+1 2a+2
0 0 0 0 0 0 0 0 0 0

1 0 1 2 o} a+l a+2 20 20+1 2a+2

2 0 2 1 2a 2+1 2a+1 o’ a+2 a+1

o 0 «a 2c 2 a+2 2a+2 1 a+1l 2a+1
a+1 |0 a+1 2a+2 a+2 2a 1 20 + 1 2 o'
a+2 |0 a+2 2041 2a+2 1 « a+1 2a 2

2c0 0 2c0 « 1 204+1 a—+1 2 204+ 2 a—+2
20+1|0 2041 a+2 a+1 2 2c 20 + 2 o' 1
204+2 10 2a+2 a+1 2a+1 « 2 a+2 1 2a

(E31) Show that X® + X + 1 € Fy[X] is irreducible, and compute the addition and multi-
plication tables for Fg = Fy[z]/(X? + X + 1).

Answer. Same method as the previous. I'll do this on request (I'm losing the
will to live).

(E32) Fix a basis B of V. Prove that any semilinear transformation on V' is a composition
of a linear transformation and a field automorphism of V' with respect to B.
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Answer. Define T := o~ !'T where « is the associated automorphism of 7T'. It
is sufficient to prove that T} is linear. It is clearly additive. What is more if ¢ € k
and v € V, then
—1 —1 —1 —1

(c)Ty = (¢* v* )T = (¢ )*(w* )T) = cvTy.

We are done.

(E33) Prove that I'L, (k) = GL, (k) x4 Aut(k). You will need to choose an appropriate
homomorphism ¢ : Aut(k) — Aut(GL,(K)) to make this work. You may find it
convenient to fix a basis for V' — so you can express elements of GL, (k) as matrices
— before you choose ¢.

Answer. Observe that H, the set of field automorphisms of V' is a subgroup
of I'L,, (k) isomorphic to Aut(k).

Claim: H N GL, (k) = {1}
Proof of claim: Observe that H fixes all of the vectors whose entries are either
1 or 0. The only elements of GL, (k) that do this are scalar multiples of 1. Now
consider a vector v = (o, 1,...,1). Any element of H that moves « will map v
to a vector that is not a scalar multiple of v. Since every non-trivial element of
H moves some non-zero element of k, the claim follows.

This claim, and (E32), implies that every element of G has a unique represen-
tation as oI’ where T' € GL,, (k) and a € Aut(k).

Claim: GL, (k) is a normal subgroup of I'L,, (k).
Proof of claim: Let 7' € GL, (k) and let a be a field automorphism of V. Let
c € k,v € V and observe that

1 —1

(cv)a 'Ta = (¢ v Ta=((c* ) T)a=c* Ta).
Thus a T« is linear and the claim follows.
This claim yields an automorphism H — Aut(GL, (k)) given by the conjugation

action of H on GL, (k). Now given two elements g1, gs € 'L, (k) we can write
them as Tia; and Too9 and obtain that

(anTh)(azT) = (a1a2)(a2_1T1a2T2) = 041042T1¢(a2)T2

and we are done.




