
EXERCISE SHEET 2 WITH SOLUTIONS

Some solutions are sketches only. If you want more details, ask me!

(E35) Show that, for any prime power q, PG2(q) is an abstract projective plane.

Answer. If < u > and < v > are distinct points in PG2(q), then they are
both incident with the plane 〈u, v〉, and with no other.

Any two planes passing through the origin in a 3-dimensional vector space
must intersect in a subspace of dimension at least 1 (otherwise we would have
four linearly independent vectors). If the planes are distinct, then the intersection
has dimension exactly 1 as required.

PG2(q) contains a quadrangle given by the points 〈(0, 0, 1)〉, 〈(0, 1, 0〉, 〈(0, 0, 1)〉
and 〈(1, 1, 1)〉, along with the lines with which they are incident.

(E39) Prove that the action of ΓL(V ) on V is well-defined, and that ΓL(V ) acts as a set of
collineations of PG(V ).

Answer. Well-defined: Suppose that U = 〈u1, . . . , uk〉 = 〈v1, . . . , v`〉. Then

u1 =
∑̀
i=1

civi for some ci ∈ k. Now, if g ∈ ΓL(V ) with associated field automor-

phism σ, then

ug1 =
∑̀
i=1

cσi v
g
i ∈ 〈v

g
1 , . . . , v

g
` 〉.

We conclude that

langleug1, . . . , u
g
k〉 ⊆ 〈v

g
1 , . . . , v

g
` 〉.

By symmetry, the reverse inclusion also holds, and our action is well-defined.
Acts as collineation: We must show that incidence is preserved, i.e. that if

U1 < U2 < V , then U g
1 < U g

2 < V for all g ∈ ΓL(V ). This is obvious.

(E42) Prove that

|PGLn(R) : PSLn(R)| =
{

1, if n is odd;
2, if n is even.

Answer. We note first that this question may have confused some at first
because of our definitions:

PGLn(R) = GLn(R)/K;

PSLn(R) = SLn(R)/(K ∩ SLn(R)).

Thus, as written PSLn(R) is not a subgroup of PGLn(R). However we can make
use of the second isomorphism theorem of group theory to see an isomorphic copy
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of PSLn(R) inside PGLn(R):

PSLn(R) = SLn(R)/(K ∩ SLn(R) ∼= KSLn(R)/K.

In light of this remark the question reduces to calculating the index of
KSLn(R) ∈ GLn(R). One must calculate the size of the set

{det(g) | g ∈ K}.
But clearly this set is equal to

{{αn | α ∈ k∗}
and this set is equal to k∗ whenever n is odd, and equal to the set of positive
numbers if k is even. Since the latter is an index 2 subgroup in k∗, the result
follows.

(E48) Prove that, for n ≥ 3, WAut(PGn(q)) contains Aut(PGn(q)) as an index 2 subgroup.
Can you say any more about the structure of WAut(PGn(q))?

Answer. Observe that, for 1 ≤ m,m′ ≤ n ≥ 3, we have
[
n
m

]
q

=
[
n
m′

]
q

if

and only if m′ ∈ {m,n −m}. Thus spaces of dimension 1 are sent to spaces of
dimension 1 or n−1. Suppose the former; now using Lemma 14 (2) we can see that
spaces of dimension 2 must be sent to spaces of dimension 2, and so on. Thus weak
automorphisms are either collineations or dualities. Now Proposition 16 implies
that the set of dualities is a coset of the set of collineations inside the group of
weak automorphisms, thus we conclude that |WAut(PGn(q)); Aut(PGn(q))| = 2
as required.

In fact one can prove that WAut(PGn−1(q) ∼= PΓL2(q) o 〈ι〉 where

ι : PSLn(q)→ PSLn(q), x 7→ x−T .

See (E59) by way of comparison.

(E50) Prove that the action of PGL(V ) on ΣV is regular.

Answer. We know that PGL(V ) acts transitively on ΣV , thus it is enough
to show that the stabilizer in GL(V ) of a point of ΣV is the group K. Take the
special tuple (e1, . . . , en,

∑n
i=1 +ei) where {e1, . . . , en} is a fixed basis for V . The

stabilizer of the first n-entries of the tuple is clearly

{diag(λ1, . . . , λn) | λ1, . . . , λn ∈ k}.
Now the stabilizer in this group of

∑n
i=1 +ei is clearly the group K as required.

(E51) Prove that PSLn(k) is 2-transitive on the points of PGn−1(k). Prove, furthermore,
that PSLn(k) is 3-transitive if and only if n = 2 and every element of k is a square.

Answer. The first part was done in lectures. Now suppose that PSLn(k)
is 3-transitive on points of PGn−1(k). If n ≥ 3, then this would imply that
PSLn(k) mapped a triple of vectors generating a 3-dimensional space to a triple of
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vectors generating a 2-dimensional vector space. This is a contradiction, hence we
conclude that n = 2. In this case, let e1, e2 be a basis. 3-transitivity implies that
the stabilizer of the pair (〈e1〉, 〈e2〉) is transitive on the remaining 1-subspaces.
This stabilizer is equal to

S = {diag(λ, λ−1 | λ ∈ k}.
Clearly the orbit of 〈(1, 1)〉 is equal to the set of 1-spaces 〈(c, d)〉 where c/d is
a non-zero square. Thus we conclude that all non-zero elements of k are square
and we are done.

Conversely if n = 2 and every element of k is a square, then it is clear that S
is transitive on all 1-subspaces apart from 〈e1〉 and 〈e2〉. The result follows.

(E52) Let G = GLn(k) and ω ∈ Ω, the set of points of PG(V ). Then

Gω
∼= Q.GLn−1(k)

where Q is an abelian group isomorphic to the additive group (kn−1,+). Prove that
the extension is split.

Answer. Simply observe that Gω = QR, a product of two groups, with

G〈en〉 =

g :=


0

A
...
0

0 · · · 0 a


∣∣∣∣∣
a ∈ k∗,
A ∈ GLn−1(k),
a = 1

det(A)

 .

Since Q is normal in Gω and Q ∩ R = {1}, every element of Gω can be written
in a unique way as a product of an element from Q and an element from R. The
result follows (cf. the answer to (E33) which uses the same method).

(E53) Prove that if n ≥ 3, then SLn(k) contains a unique conjugacy class of transvections.
Prove that if n = 2, then SLn(k) contains one or two conjugacy classes of transvec-
tions. Can you characterise when SLn(k) contains two conjugacy classes, and describe
how the subgroup Q intersects each class? (In particular you should show that each
class has non-empty intersection with Q.)

Answer. We proved in lectures that all transvections lie in SLn(k) and that
they are all conjugate in GLn(k). Thus, given a transvection t, there is a matrix
g ∈ GLn(k) such that

gtg−1 = t0 :=


1 0 · · · 0 1
0 1 0
...

. . .
...

... 1 0
0 · · · · · · 0 1

 .
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Now let n ≥ 3 and observe that, for a, b ∈ k∗, the matrix

h := diag(a, b, 1, . . . , 1, a)

centralizes t0. Thus hgtg−1h−1 = t0 and det(hg) = a2 · b · det(g). Now choose
b = 1/(a2 ·det(g)) and we have a matrix in SLn(q) conjugating t to t0 as required.

If n = 2, then the matrix

h := diag(a, a)

centralizes t0. Thus hgtg−1h−1 = t0 and det(hg) = a2 · det(g). If every element
of k is a square (e.g. if k is finite and char(k) = 2), then there is a choice of h
for which det(hg) = 1, and there is one conjugacy class of transvections. On the
other hand if there are elements of k which are non-squares (e.g. if k is finite and
char(k) 6= 2), then one cannot conjugate the following transvection to t:

t1 :=

(
1 c
0 1

)
.

(Here c is a non-square in k.) On the other hand it is clear that every transvection
can be conjugated to either t0 or t1, so the result follows.

(E54) Let t be a transvection in SLn(k) with |k| ≤ 3. Prove that t is a commutator except
when n = 2.

Answer. See page 21 of Cameron’s notes on “Classical Groups.”

(E55) Show that the set of upper-triangular matrices with 1’s on the diagonal is a Sylow
p-subgroup of GLn(q).

Answer. Simply compare the order formula for GLn(q) given in Proposition

26 of lectures, with the order of the set of upper-triangular matrices (q
1
2
n(n−1)).

The result follows immediately.

(E56) Prove that that the incidence structure defined in Proposition 27 is isomorphic to
the Fano plane, and that the natural conjugation action of G on the conjugates of U
and V respectively, induces an action on I.

Answer. Here is a Sylow 2-subgroup of SL2(7):

S := 〈
(

1 1
1 2

)
,

(
0 1
−1 0

)
〉.

The first matrix has order 8, the second has order 4. Their projective images in
PSL2(7) have orders 4 and 2 respectively, and they generate a dihedral group of
order 8. Since 8 divide PSL2(7) but 16 does not, this must be a Sylow 2-subgroup
of PSL2(7).

It is easy to check that a dihedral group of order 8 contains two Klein 4-groups
that are not conjugate to each other. Next observe that the Klein 4-group U
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which is the projective image of

〈
(

2 3
3 5

)
,

(
0 1
−1 0

)
〉

is normalized by the projective image of(
3 0
0 3

)
Thus, since U is normal in S, we get |NG(U)| ≥ 24. Thus |NG(U)| = 24 or 168,
but the latter contradicts the simplicity of G, so we obtain that |NG(U)| = 24
and there are seven conjugates of U . A similar calculation implies that there
are seven conjugates of the other Klein 4-group, V , in S, and that U and V are
not conjugate. Now since both NG(U) and NG(V ) contain 3 Sylow 2-subgroups
we conclude that each conjguate of U is incident to three conjugates of V , and
vice-versa. The result follows easily.

(E57) Prove that PSL3(4) 6∼= SL4(2) ∼= A8, despite the fact that these groups have the same
orders.

Answer. Recall that an involution in a group is an element of order 2. It is
easy to see that A8 has two conjugacy classes of involutions - one whose elements
fix four points, one whose elements fix zero points. We will prove that PSL3(4)
has a single conjugacy class of involutions and the result will follow.

Since every involution lies in a Sylow 2-subgroup, all of which are conjugate, we
need only show that all involutions in any given Sylow 2-subgroup are conjugate
to each other. By (a variant of) (E55) we choose the Sylow 2-subgroup equal to
upper-triangular matrices and observe that involutions have the following form:1 a b

0 1 0
0 0 1

 or

1 0 a
0 1 b
0 0 1

 ,

where a, b ∈ k∗. Now involutions of the first kind are all conjugate to each other,
because we can choose a conjugating matrix in the group{(

a 0
0 A

) ∣∣∣A ∈ GL2(q), a = 1/ det(A)

}
which does the trick. A similar argument shows that all involutions of the second
kind are conjugate to each other. Since the two kinds overlap we are done.

(E59) Prove that

Aut(PSLn(q)) ≥
{

PΓL2(q), if n = 2;
PΓL2(q) o 〈ι〉, if n 6= 3.

Hint: you need to study the natural action of, say, PΓLn(q) on its normal subgroup
PSLn(q).
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Answer. Let K be the unique normal subgroup of G = PΓLn(q) (resp. G =
PΓL2(q) o 〈ι〉) that is isomorphic to PSLn(q). To prove the result it is sufficient
to show that CG(K) = {1}.

Warning: In what follows I consider centralizers of matrices (i.e. elements of
SLn(q)) rather than their images in PSLn(q). One needs to be a little careful
about how you do this, as the centralizers of their images can be larger. I will
skim these details though - if you want me to explain more, please ask.

Consider the set of matrices in SLn(q) whose entries are in the prime field
Fp. This is a subgroup isomorphic to SLn(p). The centralizer in PGLn(q) of the
projective image of this subgroup in PΓLn(q) can easily shown to equal Aut(Fq).
But now any (projective image of a) matrix with elements outside all proper
subfields of Fq will have trivial centralizer in Aut(Fq). Thus we conclude that
CPΓLn(q)(PSLn(q)) is trivial.

This proves the result for n = 2. For n ≥ 3, it implies that CG(K) has size
at most 2 (since if it was larger it would intersect PΓLn(q) non-trivially). Now
suppose that |k| is odd and let

g = diag(1, 1, . . . , 1, a, a−1)

Then
gι = diag(1, 1, . . . , 1, a−1, a)

Since |k| is odd, one can choose a such that a−1 6= ap
x

for any x ∈ N and thus g
and gι are conjugate in PΓLn(q) only by matrices of the formA 0 0

0 0 a
0 b 0


where A ∈ GLn−2(q) and a, b ∈ k∗. Choosing variations on g where the a and a−1

are in different positions on the diagonal, one quickly concludes that no element
of PΓLn(q) simultaneously conjugates all such g’s to gι. This implies that any
element in G centralizing g must lie in PΓLn(q), and we conclude that CG(g).

We leave the case when |k| is even as an(other) exercise.


