EXERCISE SHEET 2 WITH SOLUTIONS

Some solutions are sketches only. If you want more details, ask me! (E35) Show that, for any prime power q, $PG_2(q)$ is an abstract projective plane.

Answer. If $\langle u \rangle$ and $\langle v \rangle$ are distinct points in $PG_2(q)$, then they are both incident with the plane $\langle u, v \rangle$, and with no other.

Any two planes passing through the origin in a 3-dimensional vector space must intersect in a subspace of dimension at least 1 (otherwise we would have four linearly independent vectors). If the planes are distinct, then the intersection has dimension exactly 1 as required.

 $\mathrm{PG}_2(q)$ contains a quadrangle given by the points $\langle (0,0,1) \rangle$, $\langle (0,1,0) \rangle$, $\langle (0,0,1) \rangle$ and $\langle (1,1,1) \rangle$, along with the lines with which they are incident.

(E39) Prove that the action of $\Gamma L(V)$ on V is well-defined, and that $\Gamma L(V)$ acts as a set of collineations of PG(V).

Answer. Well-defined: Suppose that $U = \langle u_1, \ldots, u_k \rangle = \langle v_1, \ldots, v_\ell \rangle$. Then $u_1 = \sum_{i=1}^{\ell} c_i v_i$ for some $c_i \in k$. Now, if $g \in \Gamma L(V)$ with associated field automorphism σ , then

$$u_1^g = \sum_{i=1}^{\ell} c_i^{\sigma} v_i^g \in \langle v_1^g, \dots, v_{\ell}^g \rangle.$$

We conclude that

 $langleu_1^g, \ldots, u_k^g \rangle \subseteq \langle v_1^g, \ldots, v_\ell^g \rangle.$

By symmetry, the reverse inclusion also holds, and our action is well-defined.

Acts as collineation: We must show that incidence is preserved, i.e. that if $U_1 < U_2 < V$, then $U_1^g < U_2^g < V$ for all $g \in \Gamma L(V)$. This is obvious.

(E42) Prove that

$$\operatorname{PGL}_n(\mathbb{R}) : \operatorname{PSL}_n(\mathbb{R}) | = \begin{cases} 1, & \text{if } n \text{ is odd;} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

Answer. We note first that this question may have confused some at first because of our definitions:

$$PGL_n(\mathbb{R}) = GL_n(\mathbb{R})/K;$$

$$PSL_n(\mathbb{R}) = SL_n(\mathbb{R})/(K \cap SL_n(\mathbb{R})).$$

Thus, as written $PSL_n(\mathbb{R})$ is not a subgroup of $PGL_n(\mathbb{R})$. However we can make use of the second isomorphism theorem of group theory to see an isomorphic copy of $PSL_n(\mathbb{R})$ inside $PGL_n(\mathbb{R})$:

 $\operatorname{PSL}_n(\mathbb{R}) = \operatorname{SL}_n(\mathbb{R})/(K \cap \operatorname{SL}_n(\mathbb{R})) \cong K \operatorname{SL}_n(\mathbb{R})/K.$

In light of this remark the question reduces to calculating the index of $KSL_n(\mathbb{R}) \in GL_n(\mathbb{R})$. One must calculate the size of the set

 $\{\det(g) \mid g \in K\}.$

But clearly this set is equal to

 $\{\{\alpha^n \mid \alpha \in k^*\}$

and this set is equal to k^* whenever n is odd, and equal to the set of positive numbers if k is even. Since the latter is an index 2 subgroup in k^* , the result follows.

(E48) Prove that, for $n \ge 3$, WAut(PG_n(q)) contains Aut(PG_n(q)) as an index 2 subgroup. Can you say any more about the structure of WAut(PG_n(q))?

Answer. Observe that, for $1 \leq m, m' \leq n \geq 3$, we have $\begin{bmatrix} n \\ m \end{bmatrix}_q = \begin{bmatrix} n \\ m' \end{bmatrix}_q$ if and only if $m' \in \{m, n - m\}$. Thus spaces of dimension 1 are sent to spaces of dimension 1 or n-1. Suppose the former; now using Lemma 14 (2) we can see that spaces of dimension 2 must be sent to spaces of dimension 2, and so on. Thus weak automorphisms are either collineations or dualities. Now Proposition 16 implies that the set of dualities is a coset of the set of collineations inside the group of weak automorphisms, thus we conclude that $|WAut(PG_n(q)); Aut(PG_n(q))| = 2$ as required.

In fact one can prove that $WAut(PG_{n-1}(q)) \cong P\Gamma L_2(q) \rtimes \langle \iota \rangle$ where

 $\iota : \mathrm{PSL}_n(q) \to \mathrm{PSL}_n(q), x \mapsto x^{-T}.$

See (E59) by way of comparison.

(E50) Prove that the action of PGL(V) on Σ_V is regular.

Answer. We know that PGL(V) acts transitively on Σ_V , thus it is enough to show that the stabilizer in GL(V) of a point of Σ_V is the group K. Take the special tuple $(e_1, \ldots, e_n, \sum_{i=1}^n + e_i)$ where $\{e_1, \ldots, e_n\}$ is a fixed basis for V. The stabilizer of the first *n*-entries of the tuple is clearly

{diag $(\lambda_1,\ldots,\lambda_n) \mid \lambda_1,\ldots,\lambda_n \in k$ }.

Now the stabilizer in this group of $\sum_{i=1}^{n} +e_i$ is clearly the group K as required.

(E51) Prove that $PSL_n(k)$ is 2-transitive on the points of $PG_{n-1}(k)$. Prove, furthermore, that $PSL_n(k)$ is 3-transitive if and only if n = 2 and every element of k is a square.

Answer. The first part was done in lectures. Now suppose that $PSL_n(k)$ is 3-transitive on points of $PG_{n-1}(k)$. If $n \geq 3$, then this would imply that $PSL_n(k)$ mapped a triple of vectors generating a 3-dimensional space to a triple of

vectors generating a 2-dimensional vector space. This is a contradiction, hence we conclude that n = 2. In this case, let e_1, e_2 be a basis. 3-transitivity implies that the stabilizer of the pair $(\langle e_1 \rangle, \langle e_2 \rangle)$ is transitive on the remaining 1-subspaces. This stabilizer is equal to

$$S = \{ \operatorname{diag}(\lambda, \lambda^{-1} \mid \lambda \in k \}.$$

Clearly the orbit of $\langle (1,1) \rangle$ is equal to the set of 1-spaces $\langle (c,d) \rangle$ where c/d is a non-zero square. Thus we conclude that all non-zero elements of k are square and we are done.

Conversely if n = 2 and every element of k is a square, then it is clear that S is transitive on all 1-subspaces apart from $\langle e_1 \rangle$ and $\langle e_2 \rangle$. The result follows.

(E52) Let $G = \operatorname{GL}_n(k)$ and $\omega \in \Omega$, the set of points of $\operatorname{PG}(V)$. Then

$$G_{\omega} \cong Q.GL_{n-1}(k)$$

where Q is an abelian group isomorphic to the additive group $(k^{n-1}, +)$. Prove that the extension is split.

Answer. Simply observe that $G_{\omega} = QR$, a product of two groups, with

$$G_{\langle e_n \rangle} = \left\{ g := \begin{pmatrix} & & 0 \\ A & & \vdots \\ & & 0 \\ \hline 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 \\ \end{bmatrix} \left| \begin{array}{c} a \in k^*, \\ A \in \operatorname{GL}_{n-1}(k), \\ a = \frac{1}{\det(A)} \end{array} \right\}.$$

Since Q is normal in G_{ω} and $Q \cap R = \{1\}$, every element of G_{ω} can be written in a unique way as a product of an element from Q and an element from R. The result follows (cf. the answer to (E33) which uses the same method).

(E53) Prove that if $n \ge 3$, then $\operatorname{SL}_n(k)$ contains a unique conjugacy class of transvections. Prove that if n = 2, then $\operatorname{SL}_n(k)$ contains one or two conjugacy classes of transvections. Can you characterise when $\operatorname{SL}_n(k)$ contains two conjugacy classes, and describe how the subgroup Q intersects each class? (In particular you should show that each class has non-empty intersection with Q.)

Answer. We proved in lectures that all transvections lie in $SL_n(k)$ and that they are all conjugate in $GL_n(k)$. Thus, given a transvection t, there is a matrix $g \in GL_n(k)$ such that

$$gtg^{-1} = t_0 := \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & & & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Now let $n \geq 3$ and observe that, for $a, b \in k^*$, the matrix

 $h := \operatorname{diag}(a, b, 1, \dots, 1, a)$

centralizes t_0 . Thus $hgtg^{-1}h^{-1} = t_0$ and $\det(hg) = a^2 \cdot b \cdot \det(g)$. Now choose $b = 1/(a^2 \cdot \det(g))$ and we have a matrix in $\operatorname{SL}_n(q)$ conjugating t to t_0 as required. If n = 2, then the matrix

 $h := \operatorname{diag}(a, a)$

centralizes t_0 . Thus $hgtg^{-1}h^{-1} = t_0$ and $\det(hg) = a^2 \cdot \det(g)$. If every element of k is a square (e.g. if k is finite and $\operatorname{char}(k) = 2$), then there is a choice of h for which $\det(hg) = 1$, and there is one conjugacy class of transvections. On the other hand if there are elements of k which are non-squares (e.g. if k is finite and $\operatorname{char}(k) \neq 2$), then one cannot conjugate the following transvection to t:

$$t_1 := \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}.$$

(Here c is a non-square in k.) On the other hand it is clear that every transvection can be conjugated to either t_0 or t_1 , so the result follows.

(E54) Let t be a transvection in $SL_n(k)$ with $|k| \leq 3$. Prove that t is a commutator except when n = 2.

Answer. See page 21 of Cameron's notes on "Classical Groups."

(E55) Show that the set of upper-triangular matrices with 1's on the diagonal is a Sylow p-subgroup of $\operatorname{GL}_n(q)$.

Answer. Simply compare the order formula for $\operatorname{GL}_n(q)$ given in Proposition 26 of lectures, with the order of the set of upper-triangular matrices $(q^{\frac{1}{2}n(n-1)})$. The result follows immediately.

(E56) Prove that that the incidence structure defined in Proposition 27 is isomorphic to the Fano plane, and that the natural conjugation action of G on the conjugates of U and V respectively, induces an action on \mathcal{I} .

Answer. Here is a Sylow 2-subgroup of $SL_2(7)$:

$$S := \langle \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle.$$

The first matrix has order 8, the second has order 4. Their projective images in $PSL_2(7)$ have orders 4 and 2 respectively, and they generate a dihedral group of order 8. Since 8 divide $PSL_2(7)$ but 16 does not, this must be a Sylow 2-subgroup of $PSL_2(7)$.

It is easy to check that a dihedral group of order 8 contains two Klein 4-groups that are not conjugate to each other. Next observe that the Klein 4-group U

which is the projective image of

$$\langle \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$$

is normalized by the projective image of

 $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$

Thus, since U is normal in S, we get $|N_G(U)| \ge 24$. Thus $|N_G(U)| = 24$ or 168, but the latter contradicts the simplicity of G, so we obtain that $|N_G(U)| = 24$ and there are seven conjugates of U. A similar calculation implies that there are seven conjugates of the other Klein 4-group, V, in S, and that U and V are not conjugate. Now since both $N_G(U)$ and $N_G(V)$ contain 3 Sylow 2-subgroups we conclude that each conjugate of U is incident to three conjugates of V, and vice-versa. The result follows easily.

(E57) Prove that $PSL_3(4) \not\cong SL_4(2) \cong A_8$, despite the fact that these groups have the same orders.

Answer. Recall that an involution in a group is an element of order 2. It is easy to see that A_8 has two conjugacy classes of involutions - one whose elements fix four points, one whose elements fix zero points. We will prove that $PSL_3(4)$ has a single conjugacy class of involutions and the result will follow.

Since every involution lies in a Sylow 2-subgroup, all of which are conjugate, we need only show that all involutions in any given Sylow 2-subgroup are conjugate to each other. By (a variant of) (E55) we choose the Sylow 2-subgroup equal to upper-triangular matrices and observe that involutions have the following form:

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix},$$

where $a, b \in k^*$. Now involutions of the first kind are all conjugate to each other, because we can choose a conjugating matrix in the group

$$\left\{ \begin{pmatrix} a & 0\\ 0 & A \end{pmatrix} \middle| A \in \operatorname{GL}_2(q), a = 1/\det(A) \right\}$$

which does the trick. A similar argument shows that all involutions of the second kind are conjugate to each other. Since the two kinds overlap we are done.

(E59) Prove that

$$\operatorname{Aut}(\operatorname{PSL}_n(q)) \ge \begin{cases} \operatorname{P}\Gamma \operatorname{L}_2(q), & \text{if } n = 2; \\ \operatorname{P}\Gamma \operatorname{L}_2(q) \rtimes \langle \iota \rangle, & \text{if } n \neq 3 \end{cases}$$

Hint: you need to study the natural action of, say, $P\Gamma L_n(q)$ on its normal subgroup $PSL_n(q)$.

Answer. Let K be the unique normal subgroup of $G = \Pr L_n(q)$ (resp. $G = \Pr L_2(q) \rtimes \langle \iota \rangle$) that is isomorphic to $\operatorname{PSL}_n(q)$. To prove the result it is sufficient to show that $C_G(K) = \{1\}$.

Warning: In what follows I consider centralizers of matrices (i.e. elements of $SL_n(q)$) rather than their images in $PSL_n(q)$. One needs to be a little careful about how you do this, as the centralizers of their images can be larger. I will skim these details though - if you want me to explain more, please ask.

Consider the set of matrices in $\mathrm{SL}_n(q)$ whose entries are in the prime field \mathbb{F}_p . This is a subgroup isomorphic to $\mathrm{SL}_n(p)$. The centralizer in $\mathrm{PGL}_n(q)$ of the projective image of this subgroup in $\mathrm{PFL}_n(q)$ can easily shown to equal $\mathrm{Aut}(\mathbb{F}_q)$. But now any (projective image of a) matrix with elements outside all proper subfields of \mathbb{F}_q will have trivial centralizer in $\mathrm{Aut}(\mathbb{F}_q)$. Thus we conclude that $C_{\mathrm{PFL}_n(q)}(\mathrm{PSL}_n(q))$ is trivial.

This proves the result for n = 2. For $n \ge 3$, it implies that $C_G(K)$ has size at most 2 (since if it was larger it would intersect $P\Gamma L_n(q)$ non-trivially). Now suppose that |k| is odd and let

$$g = \text{diag}(1, 1, \dots, 1, a, a^{-1})$$

Then

$$g^{\iota} = \operatorname{diag}(1, 1, \dots, 1, a^{-1}, a)$$

Since |k| is odd, one can choose a such that $a^{-1} \neq a^{p^x}$ for any $x \in \mathbb{N}$ and thus g and g^{ι} are conjugate in $\mathrm{PFL}_n(q)$ only by matrices of the form

$$\begin{pmatrix} A & 0 & 0 \\ 0 & 0 & a \\ 0 & b & 0 \end{pmatrix}$$

where $A \in \operatorname{GL}_{n-2}(q)$ and $a, b \in k^*$. Choosing variations on g where the a and a^{-1} are in different positions on the diagonal, one quickly concludes that no element of $\operatorname{PFL}_n(q)$ simultaneously conjugates all such g's to g^t . This implies that any element in G centralizing g must lie in $\operatorname{PFL}_n(q)$, and we conclude that $C_G(g)$.

We leave the case when |k| is even as an(other) exercise.