EXERCISE SHEET 3

(E60) Prove that the left and right radicals are subspaces.

Answer. We just consider the left radical, as the right is the same. Let v, w be vectors in the left radical and $c, d \in k$. Then, for $y \in V$, $\beta(cv + dw, y) = c^{\sigma}\beta(c, y) + d^{\sigma}\beta(w, y) = c^{\sigma} \cdot 0 + d^{\sigma} \cdot 0 = 0.$

The result follows immediately.

(E61) Prove that if dim $V < \infty$, then the left and right radicals have the same dimension. Give a counter-example to this assertion when dim $V = \infty$.

Answer. If dim $(V) < \infty$, then we fix a basis for V and let A be the matrix for the form β with respect to this basis. Now the left radical is equal to the null space of A while the right radical is equal to the null space of A^T . Basic linear algebra implies that these have the same dimension.

Let V be the vector space of infinite sequences $(x_1, x_2, x_3, ...)$ which have only finitely many non-zero entries. Now one can define

$$\beta: V \times V \to k, x \mapsto x^T \cdot A \cdot y,$$

where

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

is an 'infinite matrix'. (I haven't defined such an object, but it should be clear what I mean. It is clear that the left radical is non-trivial - it is equal to

$$\{(x,0,0,\cdots) \mid x \in k\}$$

On the other hand the right radical is certainly trivial. We are done.

(E62) Check that the following map is a duality.

(1)

 $\mathrm{PG}(V) \to \mathrm{PG}(V), U \mapsto U^{\perp} := \{ x \in V \mid \beta(x, y) = 0 \text{ for all } y \in U \}.$

Answer. That incidence is preserved is virtually immediate. The important thing is to check that

$$ee \quad (2) \qquad \qquad \dim(U^{\perp}) = n - \dim(U).$$

Let $\{u_1, \ldots, u_m\}$ be a basis for U; extend it to a basis $\{u_1, \ldots, u_n\}$ for V and let A be the matrix for β with respect to this basis. Now U^{\perp} is equal to the orthgonal complement **with respect to the usual dot product** to the space $\langle Au_1, \ldots, Au_m \rangle$, which (since A is invertible) is a space of dimension m. Now the result follows from (E65) or, equivalently, we can think of Uas the null-space of the $m \times n$ matrix whose columns are Au_1, \ldots, Au_m and the rank-nullity theorem gives the result.

(E64) Prove that $\lambda \in k \mid kk^{\sigma} = 1$ = { $\epsilon/\epsilon^{\sigma} \mid \epsilon \in k$ }.

Answer. See p.30 of Cameron's "Classical groups".

(E69) Show that the quadratic form Q in the lecture notes has the given matrix form.

Answer. This is Lemma 1.3 of http://www.math.ist.utl.pt/ ggranja/manuel.pdf

- (E71) Show that the quadratic form Q in the lecture notes polarizes to β .
- (E74) Prove that if char(k) = 2, k is perfect, and $Q: V \to k$ is non-degenerate, then $\dim(\operatorname{Rad}(\beta_Q)) \leq 1$.

Answer. Let $R = \operatorname{Rad}(\beta_Q)$). Since β_Q is identically zero on R we obtain that

$$Q(x+y) = Q(x) + Q(y)$$
$$Q(\lambda x) = \lambda^2 Q(x).$$

Since k is perfect, the map $\lambda \mapsto \lambda^2$ is a field automorphism and we conclude that Q is semilinear. Thus the kernel of Q restricted to R is a hyperplane of R. But the kernel of Q is trivial, thus dim $(R) \leq 1$ as required.

(E76) Complete the proof of Theorem 34 in lectures.

Answer. We know that $\dim(V_1) = n - \dim(W_1)$ so, to show that $V = V_1 \oplus W_1$, it is enough to show that $V_1 \cap W_1 = \{0\}$. But, since W_1 is a hyperbolic line, it is clear that $W_1^{\perp} \cap W_1 = \{0\}$ and we are done.

Suppose that $\beta|_{V_1}$ is degenerate. Then there exists $x \in V_1$ such that $\beta(x, y) = 0$ for all $y \in V_1$. But, since $\beta(x, y) = 0$ for all $y \in W_1$, we conclude that $\beta(x, y) = 0$ for all $y \in V$, a contradiction. The same argument works in the non-singular case.

(E78) Let U_1 and U_2 be subspaces of a vector space V having the same dimension. Show that there is a subspace W of V which is a complement for both U_1 and U_2 . **Answer.** Let $m = \dim(U_1) = \dim(U_2)$ and $n = \dim(V)$. Proceed by induction on n - m. If n - m = 0, then the result is trivial. Choose $x \in V \setminus (U_1 \cup U_2)$. Let $U_i^* = \langle U_i, x \rangle$ for i = 1, 2. By induction there is a subspace W that is a complement for both U_1^* and U_2^* . But now $\langle W, x \rangle$ is a complement for both U_1 and U_2 . We are done.

(E80) Let (V, κ) be a formed space. Then the Witt index and the type of a maximal anisotropic subspace are determined.

Answer. This is clear if V is anisotropic. Otherwise V contains hyperbolic planes. If U_1, U_2 are such, then they are isometric, so by Witt's Lemma there exists g, an isometry of V, with $U_1g = U_2$. (Note that $U_1 \cap \operatorname{Rad}(V) = 0 = U_2 \cap \operatorname{Rad}(V)$.) Then $U_1^{\perp}g = U_2^{\perp}$. The result follows by induction.

(E81) Let (V, κ) be a formed space. Any maximal totally isotropic/ totally singular subspaces in V have the same dimension. This dimension is equal to the Witt index.

Answer. Let U_1 and U_2 be such and suppose that $\dim(U_1) < \dim(U_2)$. Then any linear injection $h: U_1 \to U_2$ is an isometry. By Witt's Lemma, we can extend h to an isometry g on V. Then U_2g^{-1} is totally isotropic/totally singular since g is an isometry. But U_1 is a proper subset of U_2g^{-1} which is a contradiction.