
EXERCISE SHEET 4

(E83) Let a, b ∈ k∗. For all c ∈ k, there exist x, y ∈ k with ax2 + by2 = c.

Answer. Remark. This question is asked in lectures at a point where
k is assumed to be finite, so we prove the result in this case. (It should be
clear that the result is not clear in general: take (k, a, b, c) = (R, 1, 1,−1).)

The result is trivial if char(k) = 2, since all elements of k are squares.
Assume, then, that char(k) 6= 2. Define two sets:

Y = {c− by2 | y ∈ k}
X = {ax2 | x ∈ k}

Both of these sets have size q+1
2

hence they must overlap. The result follows.

(E84) Prove Lemma 38 of lectures for dim(V ) = 2 = char(k).

Answer. Let V be an anisotropic space of dimension 2 over k = Fq
where q is a power of 2. Let {v, w} be a basis for V with w 6∈ v⊥, and
observe that

Q(xv + yw) = ax2 + bxy + cy2

for some a, b, c ∈ k∗. Replacing x and y by scalar multiples we can ensure
that

Q(xv + yw) = x2 + xy + cy2

and the polynomial x2 + x + c ∈ k[x] is irreducible since V is anisotropic.
Write Fq2 for the splitting field of this polynomial, i.e. Fq2 = k(α) where
α2 +α+ c = 0 and the two roots of the polynomial in Fq2 are α and −1−α.
Thus ασ = −1− α.

Now identify V with Fq2 via the bijection

xv + yw 7→ x− yα,
where x, y ∈ Fq. Now observe that Q is equal to the norm map:

N : k(α)→ Fq, xv + yw 7→ N(x− yα) = (x− yα)(x− yα)σ

= x2 + xy + y2c.

The result follows.

(E86) Prove Theorem 39 of lectures.

Answer. POL1 and POL2 simply follow from the fact that a subspace
of a t.i/ t.s subspace is also a t.i/ t.s subspace.
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For POL3, set p = 〈y〉, a point of the polar space not in the maximal flat
U . Consider the linear map

U → k, x 7→ β(x, y)

which has kernel K, a hyperplane of U . Then a line of 〈U, y〉 containing p
is a flat if and only if q ∈ K, thus the set of all such lines is the t.i. space
W = 〈K, y〉 which has the same dimension as U and so is maximal. Clearly
W ∩ U = K, a hyperplane of both U and W .

To complete the proof of POL3 I should also deal with the situation
when the formed space is orthogonal and k = Fq with q even. I leave this
as (another) exercise.

For POL4, w construct a maximal flat by considering a basis
{v1, w2, . . . , vr, wr, x1, . . . , xs} where (vi, wi) are mutually orthgonal hyper-
bolic pairs and 〈x1, . . . , xs〉 is an anisotropic subspace. Then 〈v1, . . . , vr〉
and 〈w1, . . . , wr〉 are disjoint maximal flats and we are done.

(E88) Let β1 and β2 be non-degenerate alternating bilinear forms defined on a 2r-
dimensional vector space V over a field k. Then Isom(β1) and Isom(β2) (resp.
Sim(β1) and Sim(β2)) are conjugate subgroups of GL2r(k). What is more
SemiSim(β1) and SemiSim(β2) are conjugate subgroups of ΓL2r(k).

Answer. We can choose a basis B for β1 so that β1(x, y) = xTAy where

e: matrixe: matrix (1) A =

(
0 Ir
−Ir 0

)
Then

Isom(β1) = {X ∈ GL2r(k) | XTAX = A}.
Since there is also a basis so that β2(x, y) = xTAy, we conclude that there
exists C ∈ GL2r(k) such that, with respect to the basis B,

Isom(β2) = {X ∈ GL2r(k) | (C−1XC)TA(C−1XC) = A}

= {CY C−1 ∈ GL2r(k) | Y TAY = A} = Isom(β1)
C−1

.

(E91) Let G act on a set Ω. Prove that the permutation rank is 2 if and only if G
acts 2-transitively on Ω.

Answer. The permutation rank is equal to the number of orbits of G
on Ω2. Clearly G must have at least two such orbits as an element of G
cannot map a pair of distinct points to a pair of non-distinct points. Thus
G has permutation rank 2 if and only if the two orbits are the set of pairs
of distinct points and the set of pairs of non-distinct points. Thus G is
transitive on the set of pairs of distinct points, i.e. G is 2-transitive.
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Conversely if G is 2-transitive, then it is transitive on the set of pairs of
distinct points and therefore transitive on the set of pairs of non-distinct
points, and therefore has permutation rank 2.

(E93) Prove that if β(x, y) = 0, then there exists z with β(x, z), β(y, z) 6= 0.

Answer. The spaces 〈x〉⊥ and 〈y〉⊥ are subspaces of V of dimension
2r − 1. Clearly their union is not the full vector space V , thus we can take
z to be any non-zero element outside their union.

(E94) Prove that if β(x, y) 6= 0, then there exists z with β(x, z) = β(y, z) = 0.

Answer. Observe that both 〈x〉⊥ and 〈y〉⊥ are subspaces of dimension
2r− 1. Since 2r > 3, they must intersect non-trivially and we can take z to
be any element in their intersection.

(E96) Given a transvection t, there exists f ∈ V ∗ and a ∈ ker(f) such that

vT = v + (vf)a for all v ∈ V.

Answer. Not first that t− I has rank 1. Thus we can choose a basis for
V whose first n − 1 elements, v1, . . . , vn−1 are in ker(t − I) and whose last
element is some vector x. Write y = x(t − I) and note that y is non-zero.
Then define the linear functional

f : V → k, c1v1 + · · · cn−1vn−1 + cx 7→ c

and observe that, if v = c1v1 + · · · cn−1vn−1 + cx, then

(v)(t− I) = f(v)y.

Now, since (t− I)2 = 0 we observe that y ∈ ker(t− I) and we are done.

(E97) Prove that symplectic transvections in Sp6(2) and Sp4(3) are commutators.

Answer. Now let t be a symplectic transvection and write

t : V → V, v 7→ v + λβ(v, a)a

where λ ∈ k∗ and a ∈ V . Let w ∈ V be such that (w, a) is a hyperbolic
pair. Now extending this to a symplectic basis (with w as the first element
of the basis and a the last) and invoking Witt’s lemma, we know that we
can conjugate by an element of Sp2r(k) so that t is equal to the matrix

t =


1 0 · · · 0 λβ(v, a)
0 1 0
...

. . .
...

...
. . . 0

0 · · · · · · 0 1


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Thus, given two conjugacy classes of symplectic transvections in Sp2r(k)
one can find representatives t1 and t2 such that t1 − I is a scalar multiple
of t2 − I.

Now let us consider Sp2r(k) defined with respect to the matrix (1). Then
both (

A−1 0
0 At

)
and

(
I B
0 I

)
where A is any invertible r×r matrix, and B is any symmetric r×r matrix.
Then the commutator of these two matrices is equal to(

I B − ABAT
0 I

)
.

One can easily check that, for the following choices this commutator has
rank 1 and so is a transvection t:

(1) r = 2, |k| = 3, A =

(
1 1
0 1

)
, B =

(
0 1
1 0

)
;

(2) r = 3, |k| = 2, A =

1 1 0
0 0 1
1 0 0

, B =

1 0 1
0 1 1
1 1 1

.

What is more if one takes a scalar multiple γB rather than B, then one
obtains the transvection t2 such that t2 − I = γ(t− I). Thus all conjugacy
classes of transvections are represented as required.


