EXERCISE SHEET 4

(E83) Let $a, b \in k^*$. For all $c \in k$, there exist $x, y \in k$ with $ax^2 + by^2 = c$.

Answer. Remark. This question is asked in lectures at a point where k is assumed to be finite, so we prove the result in this case. (It should be clear that the result is not clear in general: take $(k, a, b, c) = (\mathbb{R}, 1, 1, -1)$.) The result is trivial if $\operatorname{char}(k) = 2$, since all elements of k are squares. Assume, then, that $\operatorname{char}(k) \neq 2$. Define two sets:

$$Y = \{c - by^2 \mid y \in k\}$$
$$X = \{ax^2 \mid x \in k\}$$

Both of these sets have size $\frac{q+1}{2}$ hence they must overlap. The result follows.

(E84) Prove Lemma 38 of lectures for $\dim(V) = 2 = \operatorname{char}(k)$.

Answer. Let V be an anisotropic space of dimension 2 over $k = \mathbb{F}_q$ where q is a power of 2. Let $\{v, w\}$ be a basis for V with $w \notin v^{\perp}$, and observe that

$$Q(xv + yw) = ax^2 + bxy + cy^2$$

for some $a, b, c \in k^*$. Replacing x and y by scalar multiples we can ensure that

$$Q(xv + yw) = x^2 + xy + cy^2$$

and the polynomial $x^2 + x + c \in k[x]$ is irreducible since V is anisotropic. Write \mathbb{F}_{q^2} for the splitting field of this polynomial, i.e. $\mathbb{F}_{q^2} = k(\alpha)$ where $\alpha^2 + \alpha + c = 0$ and the two roots of the polynomial in \mathbb{F}_{q^2} are α and $-1 - \alpha$. Thus $\alpha^{\sigma} = -1 - \alpha$.

Now identify V with \mathbb{F}_{q^2} via the bijection

$$xv + yw \mapsto x - y\alpha$$
,

where $x, y \in \mathbb{F}_q$. Now observe that Q is equal to the norm map:

$$N: k(\alpha) \to Fq, xv + yw \mapsto N(x - y\alpha) = (x - y\alpha)(x - y\alpha)^{\sigma}$$
$$= x^{2} + xy + y^{2}c.$$

The result follows.

(E86) Prove Theorem 39 of lectures.

Answer. POL1 and POL2 simply follow from the fact that a subspace of a t.i/ t.s subspace is also a t.i/ t.s subspace.

For POL3, set $p = \langle y \rangle$, a point of the polar space not in the maximal flat U. Consider the linear map

$$U \to k, x \mapsto \beta(x, y)$$

which has kernel K, a hyperplane of U. Then a line of $\langle U, y \rangle$ containing p is a flat if and only if $q \in K$, thus the set of all such lines is the t.i. space $W = \langle K, y \rangle$ which has the same dimension as U and so is maximal. Clearly $W \cap U = K$, a hyperplane of both U and W.

To complete the proof of POL3 I should also deal with the situation when the formed space is orthogonal and $k = \mathbb{F}_q$ with q even. I leave this as (another) exercise.

For POL4, w construct a maximal flat by considering a basis $\{v_1, w_2, \ldots, v_r, w_r, x_1, \ldots, x_s\}$ where (v_i, w_i) are mutually orthgonal hyperbolic pairs and $\langle x_1, \ldots, x_s \rangle$ is an anisotropic subspace. Then $\langle v_1, \ldots, v_r \rangle$ and $\langle w_1, \ldots, w_r \rangle$ are disjoint maximal flats and we are done.

(E88) Let β_1 and β_2 be non-degenerate alternating bilinear forms defined on a 2rdimensional vector space V over a field k. Then $\text{Isom}(\beta_1)$ and $\text{Isom}(\beta_2)$ (resp. $\text{Sim}(\beta_1)$ and $\text{Sim}(\beta_2)$) are conjugate subgroups of $\text{GL}_{2r}(k)$. What is more $\text{SemiSim}(\beta_1)$ and $\text{SemiSim}(\beta_2)$ are conjugate subgroups of $\Gamma L_{2r}(k)$.

Answer. We can choose a basis \mathcal{B} for β_1 so that $\beta_1(x, y) = x^T A y$ where $A = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix}$ Then $Isom(\beta_1) = \{X \in GL_{2r}(k) \mid X^T A X = A\}.$ Since there is also a basis so that $\beta_2(x, y) = x^T A y$, we conclude that there exists $C \in GL_{2r}(k)$ such that, with respect to the basis \mathcal{B} , $Isom(\beta_2) = \{X \in GL_{2r}(k) \mid (C^{-1} X C)^T A (C^{-1} X C) = A\}$ $= \{CYC^{-1} \in GL_{2r}(k) \mid Y^T A Y = A\} = Isom(\beta_1)^{C^{-1}}.$

(E91) Let G act on a set Ω . Prove that the permutation rank is 2 if and only if G acts 2-transitively on Ω .

Answer. The permutation rank is equal to the number of orbits of G on Ω^2 . Clearly G must have at least two such orbits as an element of G cannot map a pair of distinct points to a pair of non-distinct points. Thus G has permutation rank 2 if and only if the two orbits are the set of pairs of distinct points and the set of pairs of non-distinct points. Thus G is transitive on the set of pairs of distinct points, i.e. G is 2-transitive.

(1)

matrix

e:

Conversely if G is 2-transitive, then it is transitive on the set of pairs of distinct points and therefore transitive on the set of pairs of non-distinct points, and therefore has permutation rank 2.

(E93) Prove that if $\beta(x, y) = 0$, then there exists z with $\beta(x, z), \beta(y, z) \neq 0$.

Answer. The spaces $\langle x \rangle^{\perp}$ and $\langle y \rangle^{\perp}$ are subspaces of V of dimension 2r - 1. Clearly their union is not the full vector space V, thus we can take z to be any non-zero element outside their union.

(E94) Prove that if $\beta(x, y) \neq 0$, then there exists z with $\beta(x, z) = \beta(y, z) = 0$.

Answer. Observe that both $\langle x \rangle^{\perp}$ and $\langle y \rangle^{\perp}$ are subspaces of dimension 2r - 1. Since 2r > 3, they must intersect non-trivially and we can take z to be any element in their intersection.

(E96) Given a transvection t, there exists $f \in V^*$ and $a \in \ker(f)$ such that vT = v + (vf)a for all $v \in V$.

Answer. Not first that t - I has rank 1. Thus we can choose a basis for V whose first n - 1 elements, v_1, \ldots, v_{n-1} are in ker(t - I) and whose last element is some vector x. Write y = x(t - I) and note that y is non-zero. Then define the linear functional

 $f: V \to k, c_1v_1 + \cdots + c_{n-1}v_{n-1} + cx \mapsto c$

and observe that, if $v = c_1v_1 + \cdots + c_{n-1}v_{n-1} + cx$, then

(v)(t-I) = f(v)y.

Now, since $(t - I)^2 = 0$ we observe that $y \in \ker(t - I)$ and we are done.

(E97) Prove that symplectic transvections in $\text{Sp}_6(2)$ and $\text{Sp}_4(3)$ are commutators.

Answer. Now let t be a symplectic transvection and write

 $t: V \to V, v \mapsto v + \lambda \beta(v, a) a$

where $\lambda \in k^*$ and $a \in V$. Let $w \in V$ be such that (w, a) is a hyperbolic pair. Now extending this to a symplectic basis (with w as the first element of the basis and a the last) and invoking Witt's lemma, we know that we can conjugate by an element of $\operatorname{Sp}_{2r}(k)$ so that t is equal to the matrix

$$t = \begin{pmatrix} 1 & 0 & \cdots & 0 & \lambda \beta(v, a) \\ 0 & 1 & & 0 \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Thus, given two conjugacy classes of symplectic transvections in $\text{Sp}_{2r}(k)$ one can find representatives t_1 and t_2 such that $t_1 - I$ is a scalar multiple of $t_2 - I$.

Now let us consider $\operatorname{Sp}_{2r}(k)$ defined with respect to the matrix (1). Then both

$$\begin{pmatrix} A^{-1} & 0\\ 0 & A^t \end{pmatrix} \text{ and } \begin{pmatrix} I & B\\ 0 & I \end{pmatrix}$$

where A is any invertible $r \times r$ matrix, and B is any symmetric $r \times r$ matrix. Then the commutator of these two matrices is equal to

$$\begin{pmatrix} I & B - ABA^T \\ 0 & I \end{pmatrix}.$$

One can easily check that, for the following choices this commutator has rank 1 and so is a transvection t:

(1)
$$r = 2, |k| = 3, A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

(2) $r = 3, |k| = 2, A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

What is more if one takes a scalar multiple γB rather than B, then one obtains the transvection t_2 such that $t_2 - I = \gamma(t - I)$. Thus all conjugacy classes of transvections are represented as required.