EXERCISE SHEET 4

(E83) Let a,b € k*. For all ¢ € k, there exist x,y € k with ax® + by? = c.

Answer. Remark. This question is asked in lectures at a point where
k is assumed to be finite, so we prove the result in this case. (It should be
clear that the result is not clear in general: take (k,a,b,c) = (R, 1,1,—1).)
The result is trivial if char(k) = 2, since all elements of k are squares.
Assume, then, that char(k) # 2. Define two sets:
Y ={c—by*|yeck}
X ={ax* |z €k}

Both of these sets have size q;—l hence they must overlap. The result follows.

(E84) Prove Lemma 38 of lectures for dim(V') = 2 = char(k).

Answer. Let V be an anisotropic space of dimension 2 over £ = I,
where ¢ is a power of 2. Let {v,w} be a basis for V with w ¢ v*, and
observe that

Q(zv + yw) = ax? + bry + cy?
for some a, b, c € k*. Replacing x and y by scalar multiples we can ensure
that
Qzv + yw) = 2* + xy +
and the polynomial 2% + x + ¢ € k[z] is irreducible since V' is anisotropic.
Write F,2 for the splitting field of this polynomial, i.e. Fp = k(o) where
a®+a+c =0 and the two roots of the polynomial in F 2 are o and —1 —a.
Thus a® = -1 — a.
Now identify V' with [F2 via the bijection
TV + Yyw — T — Yo,
where z,y € F,. Now observe that () is equal to the norm map:
N :k(a) = Fq,zv+yw — N(z — ya) = (r — ya)(z — ya)°
=2 + 2y + y’c.

The result follows.

(E86) Prove Theorem 39 of lectures.

Answer. POL1 and POL2 simply follow from the fact that a subspace
of a t.i/ t.s subspace is also a t.i/ t.s subspace.
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For POL3, set p = (y), a point of the polar space not in the maximal flat
U. Consider the linear map

U—=k,z— B(z,y)

which has kernel K, a hyperplane of U. Then a line of (U,y) containing p
is a flat if and only if ¢ € K, thus the set of all such lines is the t.i. space
W = (K, y) which has the same dimension as U and so is maximal. Clearly
W NU = K, a hyperplane of both U and W.

To complete the proof of POL3 I should also deal with the situation
when the formed space is orthogonal and k = F, with ¢ even. I leave this
as (another) exercise.

For POL4, w construct a maximal flat by considering a basis

{v1,we, ..., vp, Wy, 1, ..., 25} where (v;, w;) are mutually orthgonal hyper-
bolic pairs and (xy,...,xs) is an anisotropic subspace. Then (vy,...,v,)
and (wy,...,w,) are disjoint maximal flats and we are done.

(E88) Let /1 and (2 be non-degenerate alternating bilinear forms defined on a 2r-
dimensional vector space V over a field k. Then Isom(f;) and Isom(fs) (resp.
Sim(;) and Sim(f;)) are conjugate subgroups of GlLo.(k). What is more
SemiSim(f;) and SemiSim(/3;) are conjugate subgroups of T'Ly,. (k).

Answer. We can choose a basis B for 8; so that 3,(z,y) = 27 Ay where

0 I
0 a=(5 )
Then
Isom(B3;) = {X € GLo, (k) | XTAX = A}.
Since there is also a basis so that 3y(z,y) = 2T Ay, we conclude that there
exists C' € GLy, (k) such that, with respect to the basis B,

Isom(B:) = {X € GLo (k) | (CT'XO)TA(CTIXC) = A}
— {CYC™' € GLy, (k) | YTAY = A} = Isom(8,)° .

(E91) Let G act on a set €. Prove that the permutation rank is 2 if and only if G
acts 2-transitively on €.

Answer. The permutation rank is equal to the number of orbits of G
on Q2. Clearly G must have at least two such orbits as an element of G
cannot map a pair of distinct points to a pair of non-distinct points. Thus
G has permutation rank 2 if and only if the two orbits are the set of pairs
of distinct points and the set of pairs of non-distinct points. Thus G is
transitive on the set of pairs of distinct points, i.e. G is 2-transitive.
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Conversely if G is 2-transitive, then it is transitive on the set of pairs of
distinct points and therefore transitive on the set of pairs of non-distinct
points, and therefore has permutation rank 2.

(E93) Prove that if f(x,y) = 0, then there exists z with §(z, z), 5(y, z) # 0.

Answer. The spaces (z)* and (y)* are subspaces of V of dimension
2r — 1. Clearly their union is not the full vector space V', thus we can take
z to be any non-zero element outside their union.

(E94) Prove that if f(x,y) # 0, then there exists z with §(z, z) = B(y, z) = 0.

Answer. Observe that both (z)* and (y)* are subspaces of dimension
2r — 1. Since 2r > 3, they must intersect non-trivially and we can take z to
be any element in their intersection.

(E96) Given a transvection ¢, there exists f € V* and a € ker(f) such that
vT'=v+ (vf)a for all v € V.

Answer. Not first that ¢ — I has rank 1. Thus we can choose a basis for
V whose first n — 1 elements, vy, ...,v, 1 are in ker(t — I') and whose last
element is some vector x. Write y = x(t — ) and note that y is non-zero.
Then define the linear functional

f:V—=kcv+-chiv,1+crr—c
and observe that, if v = civ1 + - - - ¢,_1v,—1 + cx, then
()t =1) = f(v)y.

Now, since (t — I)*> = 0 we observe that y € ker(t — I) and we are done.

(E97) Prove that symplectic transvections in Spg(2) and Sp,(3) are commutators.

Answer. Now let t be a symplectic transvection and write
t:V—=>Vu—v+A3(v,a)a

where A € k* and a € V. Let w € V be such that (w,a) is a hyperbolic
pair. Now extending this to a symplectic basis (with w as the first element
of the basis and a the last) and invoking Witt’s lemma, we know that we
can conjugate by an element of Sp,,. (k) so that ¢ is equal to the matrix

1 0 -+ 0 M(v,a)

0 1 0

a)

Lo )
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Thus, given two conjugacy classes of symplectic transvections in Sp,,.(k)
one can find representatives t; and ¢y such that ¢t; — I is a scalar multiple
of t2 — 1.

Now let us consider Sp,, (k) defined with respect to the matrix (1). Then

both
A1 0 (1B
0 At) M\ 7

where A is any invertible r x r matrix, and B is any symmetric r X r matrix.
Then the commutator of these two matrices is equal to

I B— ABAT
0 I '

One can easily check that, for the following choices this commutator has
rank 1 and so is a transvection t:

(1) r=2, ]k]:B,A:G) 1),3:(
1
0
1

0 1\
10)

(2) r=3,|kl=2 A=

Sy
I
— o =\

1
1
0
0

_ = O
—_ = =

What is more if one takes a scalar multiple vB rather than B, then one
obtains the transvection ¢, such that to — I = ~(t — ). Thus all conjugacy
classes of transvections are represented as required.




