
4 CLASSICAL GROUPS

2. Permutation groups
permutation groups

Throughout this section, assume that G is a group that acts (on the right) on some set Ω.
Equivalently, there exists a group homomorphism ϕ : G → Sym(Ω), the set of permutations on
the set Ω. Recall that

• for ω ∈ Ω, Gω := {g ∈ g | ωg = ω}, is the stabilizer of ω;
• G(Ω) :=

T
ω∈Ω

Gω is the kernel of the action;

• for ω ∈ Ω, ωG := {ωg | g ∈ G} is the orbit of ω.

Note that G(Ω) is precisely the kernel of ϕ.
We say that the action of G on Ω is

• faithful, if GΩ) = {1}; equivalently, ϕ is a monomorphism and we think of G as a subgroup
of Sym(Ω);

• transitive, if ωG = Ω for some (and hence all) ω ∈ Ω.

Remark. When a group theorist speaks of a ‘permutation group’, they mean an abstract group
G accompanied by some fixed embedding of G in Sym(Ω), for some set Ω. Equivalently, they mean
an abstract group G accompanied by some faithful action. Indeed for a long time this was the
only context in which groups were studied, in the immediate aftermath of the work of Galois.

Example 1. Let H be any subgroup of G. The group G acts transitively on H\G,
the set of right cosets of H via right multiplication.

(E8*) Prove that any transitive action is isomorphic to an action of this kind, i.e. givensub action
a transitive action of G on Ω, there exists a subgroup H ≤ G such that the action of G

on Ω is isomorphic to the action of G on H\G. You may need to recall what it means

for two group actions to be isomorphic.

Recall that when G is finite the Orbit-Stabilizer Theorem asserts that, for all ω ∈ Ω,

|G| = |Gω| · |ωG|.

(E9) Use (E8) to prove the orbit-stabilizer theorem.

(E10) Prove that if G acts transitively on Ω and Gω is a stabilizer, then the set of allstab conj
stabilizers equals the set of all conjugates of Gω. Under what conditions is the action of

G by conjugation on this set of conjugates is isomorphic to the action of G on Ω?

(E11) What conditions on H result in the action of G on H\G being faithful?

(E12*) Let G be a finite group acting transitively on a set Ω. Show that the average
number of fixed points of the elements of G is 1, i.e.

1

|G|
X

g∈G
|{ω ∈ Ω | ωg = ω}| = 1.

Example 2. Let 3 ≤ n ∈ Z+ and let G := D2n, the dihedral group of order 2n. In
other words

G := ⟨g, h | gn = h2 = 1, h−1gh = g−1⟩.
Define Ω to be the corners of an n-gon which we might as well label 1, . . . , n. We
can define g to act like the permutation (1, 2, . . . , n) and h to reflect the polygon
through a line passing through 1; see Figure 1 for an example when n = 5. Thus

h := (2, n)(3, n− 1) . . .

�
⌊n+ 2

2
⌋, ⌈n+ 2

2
⌉
�
.
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Figure 1. D10 acts on the pentagon with g = (1, 2, 3, 4, 5) and h = (2, 5)(3, 4).

(E13) Check that this gives a well-defined action of G on Ω that is both faithful and

transitive. What are the stabilizers in this action?

d10

2.1. Multiple transitivity. As soon as we have an action of a group G on a set Ω, we can define
others. For instance, define an action of G on Ω2 = Ω× Ω via

(ω1,ω2)
g := (ωg

1 ,ω
g
2),

for all g ∈ G.
In fact this defines a natural action on the set of distinct pairs,

Ω(2) := {(ω1,ω2) | ω1 ̸= ω2}.
We say that the original action of G on Ω is 2-transitive if the induced action of G on Ω(2) is
transitive. One defines k-transitivity for 2 ≥ k ∈ Z+ similarly. It is convenient to define an action
to be 1-transitive if and only if it is transitive.

(E14*) For which values of n is the action of D2n on an n-gon, 2-transitive?

(E15) Show that, for k ≥ 2, if an action is k-transitive, then it is k − 1-transitive.

(E16) Let G = Sn, the symmetric group on n letters. What is the largest value of k for

which G is k-transitive? What about G = An, the alternating group on n letters?

2.2. Blocks and primitivity. A G-congruence on Ω is an equivalence relation ∼ on Ω such that

α ∼ β =⇒ αg ∼ βg

for all g ∈ G. Any action always admits two G-congruences which we call trivial, as follows:

• Define α ∼1 β if and only if α = β;
• Define α ∼2 β always.

The equivalence classes of a G-congruence are called blocks. Note that, for ∼1, there are |Ω|
blocks all of cardinality 1 while, for ∼2, there is one block of cardinality |Ω|.

The action of G on Ω is called primitive if the only G-congruences on Ω are the trivial ones. We
call the action imprimitive if it is not primitive. (I may also write things like “G acts primitively
on the set Ω”, and will trust you to figure out what I mean.)

normal trans Lemma 2. Suppose that G acts primitively on Ω and let N ⊴ G with N ̸≤ G(Ω). Then N acts
transitively on Ω.
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Proof. Let Λ1, . . . ,Λk be the orbits of N on Ω. Define an equivalence relation ∼ on Ω such that
α ∼ β if and only if there exists i such that α, β ∈ Λi. Now suppose that α ∼ β. By definition
β = αn for some n ∈ N . Let g ∈ G and observe that

βg = (αn)g = (αg)g
−1ng.

Since N is normal, g−1ng ∈ N and we conclude that αg ∼ βg and hence ∼ is a G-congruence on
Ω.

Since G is primitive, ∼ must be one of the two trivial G-congruences, ∼1 or ∼2. Since N ̸≤ G(Ω)

we conclude that |Λi| ≥ 2 for some i = 1, . . . , k and so ≁=∼1. We conclude that ∼=∼2 which
implies, in particular that k = 1 and N acts transitively on Ω.

□

Taking N to equal G in this lemma we observe, in particular, that if |Ω| > 2 and an action is
primitive, then it is transitive.

(E17) Prove that if an action is transitive and ∼ is a G-congruence, then all of the blocks

associated with ∼ have the same cardinality.

(E18) Prove that if an action is 2-transitive, then it is primitive.

(E19*) Prove that G acts primitively on Ω if and only if G acts transitively and any

stabilizer, Gω, is a maximal subgroup of G.

2.3. Iwasawa’s Criterion. The point of the material covered so far has been to allow us to state
a famous lemma of Iwasawa which gives a criterion for a finite permutation group to be simple.

iwasawa Lemma 3. (Iwasawa’s criterion) Let G be a finite group acting primitively on a set Ω. Let ω ∈ Ω
and assume that Gω has a normal subgroup A which is abelian such that

⟨Ag | g ∈ G⟩ = G

If K ◁ G, either K ≤ G(Ω) or G′ ≤ K. In particular if G is perfect and faithful on Ω, then G is
simple.

(E20) Use Iwasawa’s criterion to show that A5 is simple.

(E21*) Now use Iwasawa’s criterion to show that An is simple for n ≥ 5. Hint: consider

the action on unordered triples from {1, . . . , n}.

Proof. LetK be a normal subgroup of G that is not contained in G(Ω). Lemma 2 implies, therefore,
that K acts transitively on Ω and hence G = GωK (use the Orbit-Stabilizer Theorem to see this).
Thus, for all g ∈ G, there exists g1 ∈ Gω, k ∈ K such that g = g1k and this implies, in particular,
that

{Ag | g ∈ G} = {Ak | k ∈ K}.
Now, since ⟨Ak | k ∈ K⟩ ≤ AK ≤ G we conclude that G = AK. Then

G/K = AK/K ∼= A/A ∩K.

Since the right hand side is a quotient of an abelian group it must itself be abelian, and we conclude
that G/K is abelian. Hence, by (E3), K ≥ G′. □

(E22*) Prove the following variant on Iwasawa’s criterion: Suppose that G is a finite

perfect group acting faithfully and primitively on a set Ω, and suppose that the stabilizer

of a point has a normal soluble subgroup S, whose conjugates generate G. Then G is

simple.
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2.4. Groups acting on groups. Given a group G with a composition series, one can (in theory)
calculate its composition factors. What about the reverse process? Suppose we are given a multiset
of composition factors, how does one construct a group G to which they correspond? In general
there are many ways to do this, and we briefly outline one such here.1

Let H and K be groups. Recall that an automorphism of K is simply a group isomorphism
K → K. The set of all automorphisms of K forms a group, which we label Aut(K). Now let
ϕ : H → Aut(K) be a group homomorphism. We define G := K ⋊ϕ H to be the group whose
elements are the elements of H ×K, with group multiplication given by

(h1, k1)(h2, k2) = (h1 · h2, k
ϕ(h2)
1 · k2).

(E23*) Check that this gives a well-defined group. If ϕ is the trivial homomorphism,

what is K ⋊ϕ H?

The next lemma lists some basic properties of this construction.

Lemma 4. Let G = K ⋊ϕ H.

(1) The subset K0 := {(1, k) | k ∈ K} is a normal subgroup of K ⋊ϕ H that is isomorphic to
K;

(2) The subset H0 := {(h, 1) | h ∈ H} is a subgroup of K ⋊ϕ H that is isomorphic to K;
(3) G/K0

∼= H;
(4) The natural conjugation action of H0 on K0 is isomorphic to the action of H on K given

by ϕ.

Proof. (E24*) Prove this.

□
In what follows I will tend to identify the groups K0 and K, and the groups H0 and H. This

allows me to abuse notation and think of K⋊ϕH as a semi-direct product of two of its subgroups,
a point of view that is helpful. Usually, too, the homomorphism ϕ is obvious from the context, so
I will tend to write the semidirect product as K ⋊H.

Suppose that G is a group with normal subgroup K such that G/K ∼= H. In this case we
write G = K.H and call G an extension of K by H.2 A semi-direct product G := K ⋊H is an
example of a group K.H, but it is important to note that not all groups K.H can be expressed as a
semi-direct product. In the literature groups K.H that can be expressed as a semi-direct product
are called split extensions and are sometimes denoted K : H; those that can’t be expressed as a
semi-direct product are called non-split extensions.3

Remark. In the particular case where groupsK andH are simple, any groupK.H, in particular
any semi-direct product K ⋊H, is an example of a group with composition factors {H,K}. Thus
semi-direct products allow us to ‘construct a group from its composition factors’, as we set out to
do at the start of this section.

(E25) Find an example of a group G = K.H (where K and H are both non-trivial finite

groups) which is non-split. Hint: there is precisely one example with |G| ≤ 7, and it is

abelian. The smallest non-abelian examples have |G| = 8.

(E26) Write down as many groups as you can which have composition factors {C2, A6}.
Identify those that can be written as split extensions.

1This section is a little terse; more detail can be found in [Ros94].
2Warning: Some authors call this an extension of H by K.
3If you know about short exact sequences, then this terminology will make sense to you. If you don’t, I recommend

you look ’em up.
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Understanding the automorphism group of a group is sometimes important. For any group G
there is a homomorphism

ϕ : G → Aut(G), g 7→ ϕg

where ϕg : G → G, h 7→ g−1hg. In other words, the natural action of a group on itself by
conjugation induces a set of group automorphisms. We define Inn(G) := Im(ϕ) and call Inn(g)
the set of inner automorphisms of G.

aut group Lemma 5. (1) Inn(G)⊴ Aut(G);
(2) ker(ϕ) = Z(G).

Proof. (E27) Prove this.

□

Note, in particular, that if Z(G) is trivial, then G embeds into its own automorphism group.
In particular this allows us to define the notion of an almost simple group: it is a group G with a
simple normal subgroup S such that

S ≤ G ≤ Aut(S).

3. Fields and Vector Spaces

We will need some background knowledge concerning linear algebra over an arbitrary field. I
will assume that you are familiar with the definition of a field, a vector space, and with some basic
facts about polynomials over fields; in particular I will also assume the following basic result,
which is Vandermonde’s Theorem.

of roots Proposition 6. Let f ∈ k[X] be a polynomial of degree n ≥ 0 with coefficients in a field k. Then
f has at most n roots.

3.1. A diversion into division rings. There is a natural definition of the notion of a field,
namely a division ring, in which one does not require that multiplication is commutative. Much of
what will be discussed below applies in this setting but not all. We give an example of a division
ring next and briefly mention some things to beware of in this more general setting.

Example 3. The real octonions, H, are defined to be a 4-dimensional vector space
over the real numbers, R. Addition is defined to be the usual addition of vectors.

To define multiplication we introduce some notation: we write a vector (a, b, c, d)
as a+ bi+ cj+dk, we define multiplication by a vector a+0i+0j+0k as the usual
scalar multiplication, we define the multiplication of basis vectors as

i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

and we use distributivity to extend this definition so that multiplication is defined
for all pairs of octonions.

(E28) Check that H is a division ring.

(E29*) Show that Proposition 6 does not hold in H.

One cannot immediately talk of a vector space over a division ring - one distinguishes between
left and right vector spaces. For instance, for a division ring k, a left vector space is a left unital
k-module.

Our choice to eschew the generality offered by division rings is justified by our desire to focus
on finite fields, and by the following classical result.

Theorem 7. (Wedderburn’s theorem) A finite division ring is a field.
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3.2. Back to fields. Throughout this section k is a field; we write k∗ := k\{0}.
mult cyclic Lemma 8. Any finite subgroup of the multiplicative group (k∗, ·) is cyclic.

Proof. Let H be a minimal non-cyclic subgroup of (k∗, ·). Our knowledge of abelian groups implies
that H ∼= Cp × Cp for some prime p. Now every element of H satisfies the polynomial Xp = 1
which is a contradiction of Proposition 6. □

Of course, if k is finite, then this result implies that (k∗, ·) is cyclic. In this case we call those
elements of k∗ that generate (k∗, ·) the primitive elements.

Example 4. Let p be a prime and define Fp := Z/pZ, the integers modulo p, with
the usual addition and multiplication. Then Fp is a field.

power fields Lemma 9. Let q = pa where p is a prime and a is a positive integer. Then there exists a finite
field of order q.

Proof. (Sketch) The previous example gives the result for a = 1. Now let f(X) ∈ Fp[X] be an
irreducible monic polynomial of degree at least 2. Since Fp[X] is a Principal Ideal Domain we
conclude that I := ⟨f(X)⟩ is a maximal ideal of Fp[X] and we conclude that Fp[X]/I is a field.
Since every element of Fp[X]/I contains a unique (and distinct) polynomial of degree less than a,
we conclude that Fp[X]/I is a field of order pa.

It remains to show that, for every p and every a > 1, there exists a monic irreducible polynomial
of degree a over Fp. We omit this part. □

A variant of the preceding result, using the theory of splitting fields can be found at https:

//kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf

Given a monic irreducible f(X) ∈ Fp[X], one can do computations in F := k[X]/⟨f(X)⟩ by
observing that

F := {ca−1X
a−1 + ca−2X

a−2 + · · ·+ c1X + c0 + ⟨f(x)⟩ | c0, . . . , ca−1 ∈ Fp}.
(We are using the fact, mentioned in the proof, that every element of Fp[X]/I contains a unique
(and distinct) polynomial of degree less than a.)

Now one represents the element ca−1X
a−1 + ca−2X

a−2 + · · · + c1X + c0 + ⟨f(x)⟩ ∈ F by the
string

ca−1α
a−1 + ca−2α

a−2 + · · ·+ c1α + c0

where α is just a convenient symbol. Addition and multiplication on the resulting set of polyno-
mials in α are just the usual addition and multiplication of polynomials, with the extra rule that
f(α) = 0.

(E30*) Show that X2 +1 ∈ F3[X] is irreducible, and compute the addition and multipli-

cation tables for F9 := F3[x]/⟨X2 + 1⟩.
(E31*) Show that X3 + X + 1 ∈ F2[X] is irreducible, and compute the addition and

multiplication tables for F8 = F2[x]/⟨X3 +X + 1⟩.

power order Lemma 10. Any finite field k has order pa where p is a prime and a is a positive integer.

Proof. Consider the set

k0 := {1, 1 + 1, 1 + 1 + 1, . . . }.
This is a closed subring of k of order n, say. Furthermore, k ∼= Z/nZ. Now, since k contains no
zero-divisors, neither does k0 and so n = p, a prime. This implies that k0 is a subfield of k of order
p and so k is a vector space over k0 of dimension a, say. Thus |K| = pa as required. □
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Note that we have shown that k has a unique subfield, k0, of order p. This is the prime subfield
of k, and any subfield of k must contain k0 (as is clear from its definition).

The following theorem summarizes some of what we have proved about finite fields so far. The
last phrase “and is unique up to isomorphism” has not been proved, but we will take it as a fact
in what follows.

finite fields Theorem 11. For every prime p and every positive integer a, there is a finite field of order q = pa.
This field is unique up to isomorphism.

In what follows we will write Fq for the field of order q = pa. We close this section with a useful
result that we prove using Galois theory.

fields aut Proposition 12. Let q = pa.

(1) The automorphism group of Fq is cyclic of of order a, and is generated by the Frobenius
automorphism, σ : x 7→ xp.

(2) For every divisor b of a, there is a unique subfield of Fq of order pb, consisting of all

solutions of xpb = x, and these are all the subfields of Fq.

Proof. Write Fp for the prime subfield of Fq, and observe that the degree of Fq over Fp is a. The
Frobenius map, σ, is an Fp-automorphism of Fq, and has order a. Thus Aut(Fq/Fp) ≥ a = |Fq : Fp|.

By Galois theory we know that, given a field extension K/F , Aut(K/F ) ≤ |K : F | with equality
if and only if K/F is a Galois extension. We conclude that Fq is a Galois extension of Fp and
that

Aut(Fq/Fp) = Gal(Fq/Fp) = ⟨σ⟩ ∼= Ca,

the cyclic group of order a.
The subgroups of ⟨σ⟩ are ⟨σa/b⟩ where b ranges through the divisor of a, and Galois theory

implies that the subfields of Fq are, therefore, the the fixed fields of σa/b, as b ranges through the

divisors of a. These are precisely the subfields of order pb consisting of all solutions of xpb = x. □

3.3. Vector spaces. Let V andW be vector spaces over some field k. A semilinear transformation
from V to W is a map T : V → W such that

(1) (v1 + v2)T = v1T + v2T for all v1, v2 ∈ V ;
(2) there exists an automorphism α of k such that

(cv)T = cα(vT )

for all c ∈ k, v ∈ V .

The automorphism α is called the associated automorphism of T . If T is not identically zero,
then α is uniquely determined by T . If α = 1 then T is a linear transformation between V and
W .

We are mainly interested in the situation where V = W (in which case we talk of ‘semilinear
transformations on V ’). In this case if T is one-to-one and onto, then the inverse map is also a
semilinear transformation and we say that T is invertible.

We can think of semilinear transformations on V in a different way: first fix a basis B of V . if
α is an automorphism of K, then extend the action to V coordinate-wise, by defining

(c1, . . . , cn)
α := (cα1 , . . . , c

α
n).

We call this a field automorphism of V with respect to B; note that it is, in particular, a semilinear
transformation from V to V .

Lemma 13. Fix a basis B of V . Any semilinear transformation on V is a composition of a linear
transformation and a field automorphism of V with respect to B.
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(E32*) Prove this.

Suppose that V has dimension n over k; recall that all vector spaces of dimension n over k are
mutually isomorphic (this will justify our next notation). We define

(1) End(V ), or Mn(k), to be the set of all linear transformations on V ;
(2) GL(V ), or GLn(k) is the set of all invertible linear transformations on V ;
(3) SL(V ), of SLn(k) is the set of all linear transformations on V of determinant 1;
(4) ΓL(V ), or ΓLn(k) is the set of all invertible semilinear transformations on V .

All of these are groups under the operation of composition. All act naturally on the vector space
V (hence our decision to define transformations on the right).

(E33*) Prove that ΓLn(k) ∼= GLn(k)⋊ϕ Aut(k). You will need to choose an appropriate

homomorphism ϕ : Aut(k) → Aut(GLn(K)) to make this work. You may find it conve-

nient to fix a basis for V – so you can express elements of GLn(k) as matrices – before

you choose ϕ.


