
EXERCISE SHEET 3

(E60) Prove that the left and right radicals are subspaces.

Answer. We just consider the left radical, as the right is the same. Let
v, w be vectors in the left radical and c, d ∈ k. Then, for y ∈ V ,

β(cv + dw, y) = cσβ(c, y) + dσβ(w, y) = cσ · 0 + dσ · 0 = 0.

The result follows immediately.

(E61) Prove that if dimV <∞, then the left and right radicals have the same dimen-
sion. Give a counter-example to this assertion when dimV =∞.

Answer. If dim(V ) < ∞, then we fix a basis for V and let A be the
matrix for the form β with respect to this basis. Now the left radical is
equal to the null space of A while the right radical is equal to the null space
of AT . Basic linear algebra implies that these have the same dimension.

Let V be the vector space of infinite sequences (x1, x2, x3, . . . ) which have
only finitely many non-zero entries. Now one can define

β : V × V → k, x 7→ xT · A · y,
where

A =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
. . .


is an ‘infinite matrix’. (I haven’t defined such an object, but it should be
clear what I mean.) It is clear that the left radical is non-trivial - it is equal
to

{(x, 0, 0, · · · ) | x ∈ k} .
On the other hand the right radical is certainly trivial. We are done.

(E62) Check that the following map is a duality.

e: perpe: perp (1) PG(V )→ PG(V ), U 7→ U⊥ := {x ∈ V | β(x, y) = 0 for all y ∈ U}.

Answer. That incidence is preserved is virtually immediate. The im-
portant thing is to check that

eeee (2) dim(U⊥) = n− dim(U).
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Let {u1, . . . , um} be a basis for U ; extend it to a basis {u1, . . . , un} for V and
let A be the matrix for β with respect to this basis. Now U⊥ is equal to the
orthgonal complement with respect to the usual dot product to the
space 〈Au1, . . . , Aum〉, which (since A is invertible) is a space of dimension
m. Now the result follows from (E65) or, equivalently, we can think of U
as the null-space of the m× n matrix whose colums are Au1, . . . , Aum and
the rank-nullity theorem gives the result.

(E64) Prove that λ ∈ k | kkσ = 1} = {ε/εσ | ε ∈ k}.

Answer. See p.30 of Cameron’s “Classical groups”.

(E65) Prove that the following map is a duality.

〈x1, . . . , x`〉 ←→ [x1, . . . , x`].

Answer. Think of x1, . . . , x` as column vectors and consider the ` × n
matrix obtained by writing them side-by-side. The rank-nullity theorem
asserts that the nullity is n minus the rank. And, since the nullity equals
dim([x1, . . . , x`], while the rank equals dim(〈x1, . . . , x`〉), the result follows.

(E69) Show that the quadratic form Q in the lecture notes has the given matrix form.

Answer. This is Lemma 1.3 of
http://www.math.ist.utl.pt/ ggranja/manuel.pdf

(E71) Show that the quadratic form Q in the lecture notes polarizes to β.
(E74) Prove that if char(k) = 2, k is perfect, and Q : V → k is non-degenerate, then

dim(Rad(βQ)) ≤ 1.

Answer. Let R = Rad(βQ)). Since βQ is identically zero on R we obtain
that

Q(x+ y) = Q(x) +Q(y),

Q(λx) = λ2Q(x).

Since k is perfect, the map λ 7→ λ2 is a field automorphism and we conclude
that Q is semilinear. Thus the kernel of Q restricted to R is a hyperplane
of R. But the kernel of Q is trivial, thus dim(R) ≤ 1 as required.

(E76) Complete the proof of Theorem 34 in lectures.
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Answer. We know that dim(V1) = n − dim(W1) so, to show that V =
V1 ⊕ W1, it is enough to show that V1 ∩ W1 = {0}. But, since W1 is a
hyperbolic line, it is clear that W⊥

1 ∩W1 = {0} and we are done.
Suppose that β|V1 is degenerate. Then there exists x ∈ V1 such that

β(x, y) = 0 for all y ∈ V1. But, since β(x, y) = 0 for all y ∈ W1, we conclude
that β(x, y) = 0 for all y ∈ V , a contradiction. The same argument works
in the non-singular case.

(E78) Let U1 and U2 be subspaces of a vector space V having the same dimension.
Show that there is a subspace W of V which is a complement for both U1 and
U2.

Answer. Let m = dim(U1) = dim(U2) and n = dim(V ). Proceed by
induction on n − m. If n − m = 0, then the result is trivial. Choose
x ∈ V \(U1 ∪ U2). Let U∗i = 〈Ui, x〉 for i = 1, 2. By induction there is a
subspace W that is a complement for both U∗1 and U∗2 . But now 〈W,x〉 is
a complement for both U1 and U2. We are done.

(E80) Let (V, κ) be a formed space. Then the Witt index and the type of a maximal
anisotropic subspace are determined.

Answer. This is clear if V is anisotropic. Otherwise V contains hy-
perbolic planes. If U1, U2 are such, then they are isometric, so by Witt’s
Lemma there exists g, an isometry of V , with U1g = U2. (Note that
U1 ∩ Rad(V ) = 0 = U2 ∩ Rad(V ).) Then U⊥1 g = U⊥2 . The result follows by
induction.

(E81) Let (V, κ) be a formed space. Any maximal totally isotropic/ totally singular
subspaces in V have the same dimension. This dimension is equal to the Witt
index.

Answer. Let U1 and U2 be such and suppose that dim(U1) < dim(U2).
Then any linear injection h : U1 → U2 is an isometry. By Witt’s Lemma,
we can extend h to an isometry g on V . Then U2g

−1 is totally isotropic/
totally singular since g is an isometry. But U1 is a proper subset of U2g

−1

which is a contradiction.


