
THE BOURGAIN-GAMBURD CONSTRUCTION OF EXPANDERS

NICK GILL

The aim of this lecture is to give an outline of the Bourgain-Gamburd construction of
expanders using growth results [BG08]. We will not be able to give more than a basic
outline of their argument - you should read the paper if you want to understand their
ideas properly! If I have time in the future, I might dramatically expand this lecture; no
time just now.

1. Introduction

Take A a finite set in SL2(Z). Define Ap a subset of Gp = SL2(Z/pZ) to be the set we
obtain by reducing all entries in elements of A modulo p; this yields an infinite family of
graphs, C(Gp, Ap)p prime.

Now we allow the possibility that we “throw away” the first few graphs - those cor-
responding to p < C for some constant C. We write the resulting family of graphs as
C(Gp, Ap)p→∞.

The question we are interested in is this:

(1.1) Is C(Gp, Ap)p→∞a family of expanders?

We can give a complete answer to question (1.1):

Theorem 1. [BG08, Thm. 1] The family of graphs C(Gp, Ap)p→∞ is a family of expanders

if and only if the group 〈A〉 < SL2(Z) does not contain a subgroup of finite index.

Some notes about this result: Bourgain and Gamburd give a number of equivalent
conditions to the one concerning a subgroup of finite index. They also give a result
concerning random Cayley graphs of this form: i.e. pick k elements g1, . . . , gk at random,
and define the set A to be {g1, g

−1
1 , . . . , gk, g

−1
k }.

We will not prove Thm. 1; nor will we prove the result about random graphs. Instead
we focus on the following subsidiary result:

Theorem 2. Fix k ≥ 2, and suppose that

(a) we have a set A ∈ SL2(Z) such that A = {g1, g
−1
1 , . . . , gk, g

−1
k }. Suppose further

that g2
i 6= 1 for all i = 1, . . . , k.

(b) There is a constant τ > 0 such that, for all primes p,

(1.2) girth(C(Gp, Ap) ≥ τ log2k p.

Then C(Gp, Ap)p→∞ is a family of expanders.

We will operate under the suppositions of Thm. 2 for the rest of this lecture. Note that
supposition (a) implies that the Cayley graph C(Gp, Ap) is undirected, and 2k-regular for
p larger than some constant C. This supposition is very minor; we include it only for
convenience.
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Supposition (b), on the other hand, is significant. The proof of (the reverse implication
in) Thm. 1 consists of two steps: take a set A such that 〈A〉 does not have a soluble
subgroup of finite index; first prove that supposition (b) holds - we have a lower bound on
the girth of C(Gp, Ap); then prove that, given this lower bound, the family C(Gp, Ap)p→∞

is a family of expanders. In this lecture, then, we are interested in the second step of this
argument.

2. Connectedness

Remember that k, A, and τ are all fixed now. In this section we prove the following
result:

Proposition 2.1. There exists C such that for p > C the graph C(Gp, Ap) is connected.

The first step is a classical result of Dickson classifying the proper subgroups of SL2(q).
We state an adapted version:

Theorem 3. For p ≥ 5, H < Gp, one of the following holds:

(a) H has a cyclic subgroup of index 2;
(b) H lies in a Borel subgroup of Gp;

(c) |H| ≤ 120.

We obtain an immediate corollary:

Corollary 2.2. For g1, g2, g3, g4 ∈ H < Gp, one of the following holds:

(a) [[g1, g2], [g2, g4]] = 1;
(b) for all i, there exists n ≤ 120 such that gn

i = 1.

We can now prove Prop. 2.1:

Proof. Suppose that C(Gp, Ap) is not connected. Then 〈Ap〉 = H < Gp (by a basic
property of Cayley graphs discussed in the last lecture).

Now take g1, g2, g3, g4 ∈ Ap (not necessarily distinct). Now Cor. 2.2 implies that one of
the following holds:

(a) [[g1, g2], [g3, g4] = 1. Note that [[g1, g2], [g3, g4]] is a word of length 16. Thus we
obtain that girth(C(Gp, Ap)) ≤ 16.

(b) gn
1 = 1 for some n ≤ 120. Then we obtain that girth(C(Gp, Ap)) ≤ 120.

In all cases, then, girth(C(Gp, Ap)) ≤ 120. But now (1.2) implies that τ log2k p ≤ 120,
and we obtain that p ≤ (2k)120τ . Take C = (2k)120τ and we are done. �

Prop. 2.1 allows us to add another supposition to those from Thm. 2. Specifically for
the rest of this lecture we assume that

(2.1) There exists C such that p > C ⇒ 〈Ap〉 = Gp.

Now we know a lot about the growth of generating sets in simple groups from earlier
lectures. In this lecture we will make use of the following special case of the general
theorem about growth in simple groups:

Theorem 4. Fix ǫ > 0. There exist constants C, δ > 0 such that for any generating set

B in Gp, either
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• |B · B · B| ≥ C|B|1+δ; or

• |B| ≥ |SL2(Z/pZ)|1−ǫ.

Note that the group Gp is not, strictly speaking, simple. Instead Gp/Z(Gp) is simple
and, for p > 2, |Z(Gp)| = 2. It is an easy matter to prove Thm. 4 from the general results
about growth in simple groups already encountered.

3. Measures

We introduce some machinery that will be important in connecting growth in groups to
expansion on graphs. For a finite group G, define µ : G → R

+ to be a probability measure

if
∑

x∈G µ(x) = 1. We record the following definitions:

(a) We have a norm on measures: ||µ||2 = (
∑

g∈G(µ(g))2))
1

2 ;

(b) We can convolve measures: let µ, ν : G → R
+ be two probability measures on a

group G. Then

(µ ∗ ν) : G → R
+, x 7→

∑

g∈G

µ(xg−1)ν(g)

is a probability measure.
(c) Convolutions have a natural associativity property. Thus, for l ∈ Z

+, we can write

µ(l) = µ ∗ · · · ∗ µ
︸ ︷︷ ︸

l

.

Now we will make use of a particular probability measure on Gp:

µA : G → R
+, x 7→

{ 1
|Ap|

, x ∈ Ap;

0, x 6∈ Ap.

Now the key point is that we can relate facts about walks on C(Gp, Ap) to properties of
the measure µA.

Define W2l to be the number of walks on C(Gp, Ap) from 1 to 1 of length 2l. Write N
for |Gp| = 1

2p(p − 1)(p + 1), write Adj for the adjacency matrix of C(Gp, Ap), and write
λ0, . . . , λN−1 for the spectrum of Adj.

The following facts are easy (after you’ve thought for a while):

NW2l = tr(Adj2l) =
∑N−1

j=0 λ2l
j ;(3.1)

µ
(2l)
A (1) = W2l

(2k)2l ;(3.2)

µ
(l)
A (g) = µ

(l)
A (g−1).(3.3)

It is (3.2) that connects walks to measures. It will be central in what follows.

3.1. Walks on C(Gp, Ap). Our discussion of measures to this point could be rewritten
for any Cayley graph of a finite group. Now we focus in on the group Gp. We state the
following proposition, which is proved in [BG08].

Proposition 3.1. For all ǫ > 0 there exists C such that, for l ≥ C log2k(p),

(3.4) ||µ
(l)
A ||2 < p−

3

2
+ǫ.
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Prop. 3.1 is difficult - it takes about half of the work in [BG08]. We will return to it
at the end, and see how it can be proved using Thm. 4 (it is in proving Prop. 3.1 that
growth results enter the proof of Thm. 2). However, for now, we will assume Prop. 3.1
and see where it gets us.

Observe first that, for l ≥ C log2k p,

W2L

(2k)2l
= µ

(2l)
A (1) =

∑

g∈G

µ(l)(g)µ(l)(g−1) =
∑

g∈G

(µ(l)(g))2 = ||µ(l)||22 < p−3+2ǫ.

We summarize:

(3.5) For l ≥ C log2k p, W2l <
(2k)2l

p3−2ǫ
.

4. Using representations

Next we use some representation theory. There is no time to give a proper introduction
to this, so we will assume a basic working knowledge in what follows.

Recall that A = {g1, g
−1
1 , . . . , gk, g

−1
k }. Once again write Adj for the adjacency matrix

of C(Gp, Ap). We have

Adj = πR(g1) + πR(g−1
1 ) + · · · πR(gk) + πR(g−1

k )

where πR : Gp → C is the regular representation of Gp.

Now we can decompose πR into irreducibles. Write Ĝ for the set of irreducible complex
representations of G. Then

πR =
⊕

ρ∈Ĝ

ρ.

Standard representation theory tells us that mρ, the multiplicity of ρ in πR is equal to
dim ρ.

Now we appeal to a classical result of Frobenius:

Theorem 5. The non-trivial irreducible complex representations of Gp have dimension at

least 1
2 (p − 1).

This yields an immediate corollary. Recall that λ0, . . . , λN−1 is the spectrum for Adj.

Corollary 4.1. All non-trivial eigenvalues of Adj occur in the spectrum with multiplicty

at least 1
2(p − 1).

Note that Prop. 2.1 implies that, for p greater than some constant, the only trivial
eigenvalue in the spectrum is λ0 = k.

5. Proof of Thm. 2

Let us prove Thm. 2. Write mλi
for the multiplicity of λi in the spectrum of Adj. Then

Cor. 4.1 implies, in particular, that mλ1
≥ 1

2(p − 1).
Now we put together a series of (in)equalities that have appeared in numbered equations

throughout the lecture so far:
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(2k)2l

p−2ǫ
> N

(2k)2l

p3−2ǫ
> NW2l =

N−1∑

j=1

λ2l
j > mλ1

λ2l
1 >

1

2
(p − 1)λ2l

1 .

With some rearranging we get

λ2l
1 ≤ 3

(2k)2l

p1−2ǫ
.

Now fix 2l = C log2k(p) (where C is as given in Prop. 3.1). Then, with some more
rearranging, we obtain that

λ1 < (2k)1−ǫ′ < 2k.

here ǫ′ depends only on ǫ, τ , and k (in particular, it does not depend on p). Thus we have
a spectral gap:

λ0 − λ1 > 2k − (2k)1−ǫ′ > 0

for all graphs in the family C(Gp, Ap)p→∞. The result is proved.

6. The connection to growth

Recall that we made use of Prop. 3.1 without proving it. We do not have time to give
a proper proof for Prop. 3.1 but we will spend a little time trying to justify how it might
follow from results on growth, in particular from Thm. 4. We apologise in advance for
the extreme sketchiness of this justification!

Let us recall the statement of Prop. 3.1.

Proposition 6.1. For all ǫ > 0 there exists C such that, for l ≥ C log2k(p),

(6.1) ||µ
(l)
A ||2 < p−

3

2
+ǫ.

Now (6.1) is an upper bound on the norm of the l-th convolution of the measure µA. It
is reasonable to think that such a bound could be derived from a statement about a single
convolution. A statement like this, for instance:

(6.2) ||µA ∗ µA||2 < pǫ||µA||2.

So let us suppose that we can derive (6.1) from (6.2). How then can we prove (6.2)?
(In fact (6.2) is not true without some extra conditions but we won’t worry about this.)

We need to connect growth in groups to measures. For A,B subsets of a finite group
G, we define the measure

χA : G → R
+, x 7→

{
1, x ∈ A;
0, x 6∈ A.

We can define χB analagously. Note that χA bears a startling resemblance to µA; note too
that χA is not a probability measure as it doesn’t satisfy the property that

∑

x∈G χA(x) = 1.
Now we define the multiplicative energy of A and B:

E(A,B) = |{(x1, x2, y1, y2) ∈ A × A × B × B | x1y1 = x2y2}|.

The multiplicative energy counts the number of repeats when we multiply AB. Roughly
speaking if the energy, E(A,B) is large, then the set AB is small; in other words energy
is in an inverse relationship to growth.

Now we connect the two in an easy lemma:
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Lemma 6.2. ||χA ∗ χB||2 = E(A,B).

Now suppose that (6.2) does not hold. Then Lem. 6.2 immediately implies a lower
bound on the additive energy:

E(Ap, Ap) ≥ pǫ||µA||2.

It turns out that, with a great deal of fiddling about, we can translate this statement into
a statement about growth. Intuitively a lower bound on energy implies an upper bound
on growth, and this is exactly what we get:

|Ap · Ap · Ap| < |Ap|
1+ǫ′

where ǫ′ depends only on ǫ, k, and τ . But now Thm. 4 implies that |Ap| > |Gp|
1−δ; as p

tends towards infinity this gives a contradiction (since |Ap| = 2k is fixed). We conclude
that (6.2) holds, as required.

The last paragraph should be taken as a very rough guide to the philosophy of Bourgain
and Gamburd’s argument. The key point is that we are able to connect growth to measures
through the concept of multiplicative energy.
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