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I
In this talk we will be interested in the finite simple groups.
The study of infinite simple groups is an entirely different
proposition: much wilder and much less understood.
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Let G be a finite simple group. Then G lies in one (or more) of
the following families:

the cyclic groups of prime order;

the alternating groups of degree at least 5;
the finite groups of Lie type;

B the 26 sporadic groups.

The four families are pair-wise disjoint except for (2) and (3).
We will spend the rest of the lecture discussing their various
properties.
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G is a finite abelian simple group if and only if G = C,, a
cyclic group of prime order.
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Multiply-transitive simple groups

Simbte e The natural habitat of a group is inside Sym(§2) for some set

Lol ), ie. all groups are naturally permutation groups.
! Suppose that G < Sym(f2). We say that G is transitive if

Vo, € Q,dg € G,ag = .

We say that G is k-transitive if

V(0‘1a o ,Oék), (617' . 'aﬁk) € Q*ka
Elg € G,(Oélg,OQg,.--,Oékg) = (ﬁla"'vﬁk)-

k-transitive groups have a tendency towards simplicity...

Theorem

(Burnside) A 2-transitive group G has a unique minimal
normal subgroup, which is either elementary-abelian or simple.
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Theorem

Other than Alt(n) and Sym(n), the finite almost simple
3-transitive groups are:

(5-trans): My and My (twice);
(4-trans): Mo3 and Myq;
(3—trans): M>s, My11 and PGL2(q) with q > 4.

So far the only proof that these really are all the almost simple
3-transitive groups relies on CFSG. Note that Mj (and My in
its 4-transitive incarnation) are sharply k-transitive.
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tions. Je rappellerai encore que, malgré le petit nombre de résultats
acquis a cette doctrine, Cauchy avait publié pendant le cours de
I'année 1845, dans les Comptes rendus des séances de U'Académie,
une longue série de Mémoires enticrement relatifs 4 cette théorie, mais
il ne fit la découverte d'aucune fonction.

A ces Mémoires de Cauchy j'ai toutefois emprunté une idéc, et une
seule : c'est celle de distinguer les fonctions en fonctions transitives et
en fonctions intransitives. En effet, dans cette théorie, ce sont les fonc-
tions transitives, et surtout celles qui le sont plusieurs fois, qui sont
seiiles vraiment remarquables.
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tions. Je rappellerai encore que, malgré le petit nombre de résultats
acquis a cette doctrine, Cauchy avait publié pendant le cours de
I'année 1845, dans les Comptes rendus des séances de U'Académie,
une longue série de Mémoires entierement relatifs i cette théorie, mais
il ne fit la découverte d'aucune fonction.

A ces Mémoires de Cauchy j'ai toutelois emprunté une idée, et une
seule : c'est celle de distinguer les fonctions en fonctions transitives et
en fonctions intransitives. En effet, dans cette théorie, ce sont les fonc-
tions transitives, et surtout celles qui le sont plusieurs fois, qui sont
seiiles vraiment remarquables.

There was some uncertainty about Mathieu's results so in 1873
he wrote another paper, from which | quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, 1'd better do it myself.



The Mathieu groups Il

i e In 1938, Witt constructed the Mathieu groups geometrically,

Simple Groups : . . K
BRI  thereby laying all questions about their existence to rest.

Nick Gill
(OV)




The Mathieu groups Il

Simbte e In 1938, Witt constructed the Mathieu groups geometrically,
BRI  thereby laying all questions about their existence to rest.

Nick Gill
ou

Definition

A Steiner System, S(k, m, n) is a set 2 of size n and a set of
subsets of 2, each of size m such that any set of k elements of
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Definition

A Steiner System, S(k, m, n) is a set 2 of size n and a set of
subsets of 2, each of size m such that any set of k elements of
Q lies in exactly one of these subsets.

Theorem
There exist unique SS S(5,6,12) and S(5,8,24) such that

AU'C(S(5,67 12)) = My and Aut(5(5, 8, 24)) = Mpy,.

Given a SS S(k, m, n) and an element a € , one obtains
another SS S(k —1,m —1,n— 1) on Q\{a} by restricting to
the subset of S(k, m, n) containing the element «.
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"0 The archetypal example is PSL,(q):

Define the group SL,(q) to be the set of all n x n matrices
over a field of order g with determinant 1.

Define Z to be the center of SL,(g). This is a group of
scalar matrices of size (n,q — 1).

Define the group PSL,(q) = SLn(q)/Z.

Theorem
If (n,q) €{(2,2),(2,3)}, then PSL,(q) is simple.

This is proved using Iwasawa’s criterion and the fact that the
natural action of PSL,(q) on 1l-spaces is 2-transitive.
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Let V be a vector space of dimension n over [Fq, a field of
order q.

Let ¢ : V x V — Fq be a bilinear form.
Let G, < GL,(q) be the group of isometries of ¢, i.e.

Gy = {g € GLu(q) | 6(gv.gw) = o(v, w)¥v,w € V}.

The group Gg, as well as some of its subgroups and their
quotients, is known as a finite classical group.
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Symplectic groups and (some) orthogonal groups

e Finite The theory of bilinear forms tells us that, if ¢ is
imple Groups

+ Dsaripiitan non-degenerate, then it is either alternating or symmetric.
&Sy If ¢ is alternating, then G, = Sp,(q), a symplectic group.

Theorem
If n > 4, then PSp,(q) = Sp,(q)/Z(Sp,(q)) is simple.

If ¢ is symmetric and q is odd, then G4 = GOj,(q), an
orthogonal group.

Theorem

If n > 5, then GO5,(q) has a normal subgroup Q¢(q) such that
PQO(q) = Q7(q)/Z(5(q)) is simple.

The remaining classical groups — PSU,(q) (unitary) and
PQS(2?) (orthogonal with g even) — are obtained by studying
isometries of sesquilinear and quadratic forms.
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PULUUSM [0 1955 Claude Chevalley found a way to construct (some of)

Bl the finite classical groups using the Lie theory, rather than the
theory of forms.
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Let G be a simple algebraic subgroup of GL,(Fq).
The possibilities for G are given by the Dynkin diagrams.
Look at G = GF, the subset of G fixed by the Frobenius

automorphism (a;) — (af).

A It is easy to prove that G is a finite group.

These groups are called the Chevalley groups. They include
most of the finite classical groups, plus some more - the first
exceptional groups:

G2(9),F4(q),Es(q), E7(q), Es(q).
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The Finite ?
SVl What about PSU(q)?
I: Description

Fi‘glj"‘)” In 1959 Robert Steinberg realised that
TR the ‘missing’ classical groups could be /
3 constructed by twisting Chevalley

(v groups using a graph automorphism. J—K
& 1 3

Let G be a simple algebraic subgroup of GL,(Fq).
Suppose that the Dynkin diagram for G has no multiple
bonds and admits a symmetry.

We can modify the Frobenius automorphism using this
symmetry to construct a different finite subgroup of G.
These are the Steinberg groups. They include the missing finite

classical groups, plus some more exceptional groups:

3D4(q),’Es(q).
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In 1960, using totally different ideas, Michio
Suzuki constructed a new infinite family of
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S In 1960, using totally different ideas, Michio

1: Description Suzuki constructed a new infinite family of
simple groups — Sz(2%7*1) —as 4 x 4

matrices over a field of even order.

Soon after, Rimhak Ree realised that

Steinberg’s ‘twist’ could be applied to

algebraic groups G whose Dynkin diagram

was symmetric and included multiple bonds.

He obtalned the Ree groups. They include the Suzuki groups,

as well as two new families of exceptional groups:
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2B2(223+1) — SZ(223+1), 2F4(223+1), 2G2(323+1).

If a > 1 these groups are all simple. In 1964 Tits showed that
2 . . .

F4(2) contains a new simple group as a subgroup of index 2.
This is the last simple group of Lie type.



The rise of the sporadics

The Finite
Simple Groups
I: Description




The rise of the sporadics

The Finite
Simple Groups
I: Description

Nick Gill
(OU)

One vyear later, in 1965, Zvonimir Janko
constructed the first new sporadic simple
group — J; — since Mathieu in 1861.
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One vyear later, in 1965, Zvonimir Janko
constructed the first new sporadic simple
group — J; — since Mathieu in 1861.

But that is another story...




