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Simple groups

Definition

A group G is called simple if it has no non-trivial proper normal
subgroups.

Galois introduced the notion of a simple
group and observed that Alt(5) was simple.

In this talk we will be interested in the finite simple groups.
The study of infinite simple groups is an entirely different
proposition: much wilder and much less understood.
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In 1981 CFSG was announced, although it was only in 2001
that all parts of the proof were written up and published.

John Thompson Michael Aschbacher
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The Classification of Finite Simple Groups

Theorem

Let G be a finite simple group. Then G lies in one (or more) of
the following families:

1 the cyclic groups of prime order;

2 the alternating groups of degree at least 5;

3 the finite groups of Lie type;

4 the 26 sporadic groups.

The four families are pair-wise disjoint except for (2) and (3).
We will spend the rest of the lecture discussing their various
properties.
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The cyclic groups of prime order

Theorem

G is a finite abelian simple group if and only if G ∼= Cp, a
cyclic group of prime order.
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Multiply-transitive simple groups

The natural habitat of a group is inside Sym(Ω) for some set
Ω, i.e. all groups are naturally permutation groups.
Suppose that G ≤ Sym(Ω). We say that G is transitive if

∀α, β ∈ Ω,∃g ∈ G , αg = β.

We say that G is k-transitive if

∀(α1, . . . , αk), (β1, . . . , βk) ∈ Ω∗k ,

∃g ∈ G , (α1g , α2g , . . . , αkg) = (β1, . . . , βk).

k-transitive groups have a tendency towards simplicity...

Theorem

(Burnside) A 2-transitive group G has a unique minimal
normal subgroup, which is either elementary-abelian or simple.
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Alternating groups

Theorem

When n ≥ 5, G = Alt(n) is simple.

Proof.

Suppose that N is a non-trivial proper normal subgroup of G .

1 The conjugacy class of 3-cycles generate G .

2 If N contains a 3-cycle, then   .

3 If g is non-trivial in N, then there are conjugates
g1, . . . , gl of g such that g1 · · · gl is a 3-cycle.
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The Mathieu groups I

The first five sporadic groups are called the Mathieu groups.
They arise ‘naturally’:

Theorem

Other than Alt(n) and Sym(n), the finite almost simple
3-transitive groups are:

1 (5-trans): M24 and M12 (twice);

2 (4-trans): M23 and M11;

3 (3-trans): M22, M11 and PGL2(q) with q ≥ 4.

So far the only proof that these really are all the almost simple
3-transitive groups relies on CFSG.

Note that M12 (and M11 in
its 4-transitive incarnation) are sharply k-transitive.
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The Mathieu groups II

Emile Mathieu introduced M12 and M24 in
an 1861 paper. Here’s some of the
introduction.

There was some uncertainty about Mathieu’s results so in 1873
he wrote another paper, from which I quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, I’d better do it myself.



The Finite
Simple Groups
I: Description

Nick Gill
(OU)

The Mathieu groups II

Emile Mathieu introduced M12 and M24 in
an 1861 paper. Here’s some of the
introduction.

There was some uncertainty about Mathieu’s results so in 1873
he wrote another paper, from which I quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, I’d better do it myself.



The Finite
Simple Groups
I: Description

Nick Gill
(OU)

The Mathieu groups II

Emile Mathieu introduced M12 and M24 in
an 1861 paper. Here’s some of the
introduction.

There was some uncertainty about Mathieu’s results so in 1873
he wrote another paper, from which I quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, I’d better do it myself.



The Finite
Simple Groups
I: Description

Nick Gill
(OU)

The Mathieu groups II

Emile Mathieu introduced M12 and M24 in
an 1861 paper. Here’s some of the
introduction.

There was some uncertainty about Mathieu’s results so in 1873
he wrote another paper, from which I quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, I’d better do it myself.



The Finite
Simple Groups
I: Description

Nick Gill
(OU)

The Mathieu groups II

Emile Mathieu introduced M12 and M24 in
an 1861 paper. Here’s some of the
introduction.

There was some uncertainty about Mathieu’s results so in 1873
he wrote another paper, from which I quote:

...if no expert was able to fill in the details of my
claims made twelve years ago, I’d better do it myself.



The Finite
Simple Groups
I: Description

Nick Gill
(OU)

The Mathieu groups III

In 1938, Witt constructed the Mathieu groups geometrically,
thereby laying all questions about their existence to rest.

Definition

A Steiner System, S(k ,m, n) is a set Ω of size n and a set of
subsets of Ω, each of size m such that any set of k elements of
Ω lies in exactly one of these subsets.

Theorem

There exist unique SS S(5, 6, 12) and S(5, 8, 24) such that

Aut(S(5, 6, 12)) = M12 and Aut(S(5, 8, 24)) = M24.

Given a SS S(k ,m, n) and an element α ∈ Ω, one obtains
another SS S(k − 1,m − 1, n − 1) on Ω\{α} by restricting to
the subset of S(k,m, n) containing the element α.
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Simple groups of Lie type

These are central quotients of matrix groups over a finite field.
The archetypal example is PSLn(q):

1 Define the group SLn(q) to be the set of all n× n matrices
over a field of order q with determinant 1.

2 Define Z to be the center of SLn(q). This is a group of
scalar matrices of size (n, q − 1).

3 Define the group PSLn(q) = SLn(q)/Z .

Theorem

If (n, q) 6∈ {(2, 2), (2, 3)}, then PSLn(q) is simple.

This is proved using Iwasawa’s criterion and the fact that the
natural action of PSLn(q) on 1-spaces is 2-transitive.
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Camille Jordan Leonard Dickson
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The rest of the classical groups

The finite classical groups have been known for a long time.
We construct them using forms on a vector space.

1 Let V be a vector space of dimension n over Fq, a field of
order q.

2 Let φ : V × V → Fq be a bilinear form.

3 Let Gφ < GLn(q) be the group of isometries of φ, i.e.

Gφ = {g ∈ GLn(q) | φ(gv , gw) = φ(v ,w)∀v ,w ∈ V }.

The group Gφ, as well as some of its subgroups and their
quotients, is known as a finite classical group.
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Symplectic groups and (some) orthogonal groups

The theory of bilinear forms tells us that, if φ is
non-degenerate, then it is either alternating or symmetric.

If φ is alternating, then Gφ = Spn(q), a symplectic group.

Theorem

If n ≥ 4, then PSpn(q) = Spn(q)/Z (Spn(q)) is simple.

If φ is symmetric and q is odd, then Gφ = GOε
n(q), an

orthogonal group.

Theorem

If n ≥ 5, then GOε
n(q) has a normal subgroup Ωε

n(q) such that
PΩε

n(q) = Ωε
n(q)/Z (Ωε

n(q)) is simple.

The remaining classical groups – PSUn(q) (unitary) and
PΩε

n(2a) (orthogonal with q even) – are obtained by studying
isometries of sesquilinear and quadratic forms.
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Connection to Lie groups

The finite classical groups have
big sisters amongst the simple
Lie groups over C.

Theorem

The simple complex Lie groups
are SLn(C), Spn(C), SOn(C),
G2(C), F4(C), E6(C), E7(C),
E8(C).

These groups are classified
using Dynkin diagrams.
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Chevalley groups

In 1955 Claude Chevalley found a way to construct (some of)
the finite classical groups using the Lie theory, rather than the
theory of forms.

1 Let G be a simple algebraic subgroup of GLn(Fq).

2 The possibilities for G are given by the Dynkin diagrams.

3 Look at G = GF , the subset of G fixed by the Frobenius
automorphism (aij) 7→ (aqij).

4 It is easy to prove that G is a finite group.

These groups are called the Chevalley groups. They include
most of the finite classical groups, plus some more - the first
exceptional groups:

G2(q),F4(q),E6(q),E7(q),E8(q).
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Exceptional and twisted I: Steinberg groups

What about PSU(q)?

In 1959 Robert Steinberg realised that
the ‘missing’ classical groups could be
constructed by twisting Chevalley
groups using a graph automorphism.

1 Let G be a simple algebraic subgroup of GLn(Fq).
2 Suppose that the Dynkin diagram for G has no multiple

bonds and admits a symmetry.
3 We can modify the Frobenius automorphism using this

symmetry to construct a different finite subgroup of G.

These are the Steinberg groups. They include the missing finite
classical groups, plus some more exceptional groups:

3D4(q), 2E6(q).
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Exceptional and twisted II: Ree-Suzuki

In 1960, using totally different ideas, Michio
Suzuki constructed a new infinite family of
simple groups – Sz(22a+1) – as 4× 4
matrices over a field of even order.

Soon after, Rimhak Ree realised that
Steinberg’s ‘twist’ could be applied to
algebraic groups G whose Dynkin diagram
was symmetric and included multiple bonds.

He obtained the Ree groups. They include the Suzuki groups,
as well as two new families of exceptional groups:

2B2(22a+1) = Sz(22a+1), 2F4(22a+1), 2G2(32a+1).

If a > 1 these groups are all simple. In 1964 Tits showed that
2F4(2) contains a new simple group as a subgroup of index 2.
This is the last simple group of Lie type.
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The rise of the sporadics

One year later, in 1965, Zvonimir Janko
constructed the first new sporadic simple
group – J1 – since Mathieu in 1861.

But that is another story...
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