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A brief recap...

Recall that...

Definition

A group G is called simple if it has no non-trivial proper normal
subgroups.
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The Classification of Finite Simple Groups

Today we will prove the following theorem.

Theorem

Let G be a finite simple group. Then G lies in one (or more) of
the following families:

1 the cyclic groups of prime order;

2 the alternating groups of degree at least 5;

3 the finite groups of Lie type;

4 the 26 sporadic groups.
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Building groups

The simple groups are often described as the ‘building blocks’
of groups, in the following sense...

Definition

A composition series of a group G is a subnormal series

{1} = H0 C H1 C · · ·C Hn = G

such that every quotient Hi+1/Hi is a non-trivial simple group.

The quotients Hi+1/Hi are called the composition factors of
G .
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Composition series

Theorem

Let G be a group with two composition series:

{1} = G0 C G1 C G2 · · ·C Gm = G ;

{1} = H0 C H1 C H2 · · ·C Hn = G .

Then the two multisets of composition factors are equal:

{G1/G0, . . .Gm/Gm−1} = {H1/H0, . . . ,Hn/Hn−1}.

Thus G has associated to it a unique multiset of composition
factors. We think of G as being ‘built’ from this multiset.
If the composition factors are all cyclic of prime order, then we
call G soluble or solvable (after Galois).
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More on composition factors

Consider the cyclic group C6. Here are two composition series:

C6

C3C2

{1}

C3 C2

C3C2

Clearly the multiset of composition factors of C6 is {C2,C3}.
Warning: This is also the multiset of composition factors for
Sym(3)...
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Group cohomology

In general there may be many ways to construct a group from a
multiset of composition factors. Understanding this situation is
hard...

Theorem

Let N be an abelian group, and let Q be any group.
Equivalence classes of extensions

{1} → N → G → Q → {1}

are in 1-1 correspondence with the cohomology group
H2(Q,N).
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The proof of CFSG

Our story starts, in 1963, with two very clever men and a 255
page paper.

Walter Feit John Thompson
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The Odd Order Theorem

Theorem

If G is a finite simple group of odd order, then G is cyclic.

An equivalent formulation is the following:

Theorem

If G is a finite group of odd order, then G is soluble.
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Proving the Odd Order Theorem

The basic strategy of the Odd Order Theorem is the same as
the basic strategy of the proof of CFSG.

1 Suppose G is a non-soluble group of odd order.

2 We may assume that G is a minimal counter-example,

i.e. G is a simple group for which every subgroup is
soluble.

3 Study the internal structure of G ,

i.e. use group theory
to analyse the possible structure of the maximal subgroups
of G .

4 Derive a contradiction somehow(!)

In this case Feit and
Thompson used the Brauer-Suzuki theory of exceptional
characters. This theory connects the characters of a group
G to the characters of its maximal subgroups.
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Characters, what?

Let G be a finite group.

1 A representation of G is a homomorphism
ρ : G → GL(V ) where V is an n-dimensional vector space
over C.

2 Each representation ρ : G → GL(V ) yields a character:

χρ : G → C, g 7→ trace(ρ(g)).

3 A representation is called irreducible if the matrices
representing G do not preserve any non-trivial proper
subspace of V .

4 Fact: the irreducible representations (and hence the
irreducible characters) of G are in 1-1 correspondence with
the conjugacy classes of G .
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The Character Table

The characters of a group G can be written down in a square
of numbers called the Character Table of G .

Char/ CC 1A 2A 3A 5A 5B

χ1 1 1 1 1 1

χ2 3 -1 0 1
2 (1 +

√
5) 1

2 (1−
√

5)

χ3 3 -1 0 1
2 (1−

√
5) 1

2 (1 +
√

5)
χ4 4 0 1 -1 -1
χ5 5 1 -1 0 0

If one is given the character table of some mysterious group G ,
then one can immediately derive a lot of information about G .
The above character table of a perfect group G of order 60...
So G must be Alt(5).
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Characters and simple groups

Characters had already been used, to spectacular effect, to
prove a famous theorem about simple groups.

William Burnside

Theorem

(Burnside 1904) If G is a finite
simple group of order paqb, for
primes p and q, then G is
cyclic.

Character theory would play a
significant role in many of the
results leading to CFSG.
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What was that ‘internal structure’ nonsense?

Suppose that G is a minimal counter-example to the odd-order
theorem. Here’s an example of the sort of analysis used (due to
Suzuki).

1 Special case: the centralizer of every non-trivial element
of G is abelian.

2 Then the elements of G\{1} break up into equivalence
classes, such that each equivalence class is the set of
non-identity elements of a maximal abelian subgroup of G .

3 The normalizers of these maximal abelian subgroups turn
out to be exactly the maximal proper subgroups of G.

4 What is more these normalizers are Frobenius groups, i.e.
they have a very special, very well understood structure.

5 One can work out the characters of G by inducing from
the characters of these Frobenius groups.
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Lessons to be learnt

Notice that, in the special case we just discussed, all of
the maximal subgroups of G are normalizers of a p-group
for some prime p.

Definition: A local subgroup of a group G is a subgroup
which is equal to the normalizer of a p-group.

It turns out that the local subgroups are the most
important when it comes to understanding ‘internal
structure’.

And so local analysis is born.
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Involution centralizers

The most important local subgroups are involution centralizers.

Note that the Odd Order Theorem implies that a nonabelian
simple group always contains such a thing.

Richard Brauer

Theorem

(Brauer 1955) There are a
finite number of simple groups
with a specified involution
centralizer.

11 of the 21 modern sporadic
groups were discovered by
examining involution
centralizers...
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J1

In 1966 Janko discovered J1, the first new sporadic group since
Mathieu. His theorem is typical of the area.

Theorem

If G is a simple group with
abelian Sylow 2-subgroups of
order 8 and the centralizer of
some involution of G is
isomorphic to C2×Alt(5), then
G is a uniquely determined
simple group of order 175, 560.

Moreover Janko gave two matrices in GL7(11) which generated
this new group.
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A game of two halves

The discovery of a new sporadic group often proceeded in two
stages. Take the other Janko groups J2 and J3, for instance.

Theorem

(Janko 1969) If G is a simple group in which the centralizer of
an involution is isomorphic to (Q8 ∗Q8).Alt(5), then one of the
following holds:

1 G has two classes of involutions and |G | = 27 · 33 · 52 · 7;

2 G has one class of involutions and |G | = 27 · 35 · 5 · 17 · 19.

Janko proved this theorem with local analysis. In both cases he
determined the complete local structure of such a group G as
well as its character table.
But does such a group exist? And, if it does, is it unique?
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The second half

For both cases, the answer to both questions is “yes”.

1 For the first case, |G | = 27 · 33 · 52 · 7 = 604, 800. Hall and
Wales constructed a group of the required form inside
Sym(100). They were also able to prove uniqueness.

2 For the second case, |G | = 50, 232, 960. Higman and
McKay constructed a simple group of this order, and
Wong was able to show that if such a group existed then
it was unique.

Methods varied and, at least initially, involved the use of
computers.
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Proof Structure

Danny Gorenstein

In 1972 Danny Gorenstein
proposed a 16-point program
for proving CFSG. He broke
down the different possible
centralizer types into different
categories, and encouraged
people to go at it!

Hypothesis: Suppose G is a minimal counter-example to
CFSG. i.e. the composition factors of all proper subgroups of G
are in one of the four families. Then...
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What were the chances?

Ron Solomon writes of the period,

Not a single leading group theorist
besides Gorenstein believed in
1972 that the Classification would
be completed this century. By
1976, almost everyone believed
that the Classification problem was
“busted”. The principal reason
was Michael Aschbacher’s
lightning assaults on the
B-Conjecture, the Thin Group
Problem, and the Strongly
p-embedded 2-local problem.

Michael
Aschbacher
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How did it end?

The existence of a new sporadic group M was predicted in
1973 independently by B. Fischer and R. Griess.
Griess was interested in classifying those simple groups
containing 2.B as the centralizer of an involution.
Griess calculated that, if M existed, it had order

246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71.

Griess later constructed a group M with the given
properties as the automorphism of an algebra over a real
vector space of dimension 196 884.
Thompson showed that M was the only group with the
given properties admitting an irreducible representation of
degree 196 883.
So, when Norton showed that all groups of this kind have
such an irreducible representation, the uniqueness of M
was proved.... and so was CFSG.
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was proved.... and so was CFSG.
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Some moonshine to finish

The proof of the CFSG spawned a great deal of new
mathematics, of which the most celebrated involves the
Monster group, and is known as Monstrous Moonshine.

Suppose that f is a meromorphic function on H.

f is called a modular function if it satisfies

f

(
az + b

cz + d

)
= f (z)

for all transformations in Γ = PSL2(Z). We can think of f
as a function on the Riemann surface H/Γ.
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More moonshine

A particularly important modular function is the elliptic
modular function j . It has Fourier series

j(q) = q−1 + 196884q + 21493760q2 + 864299970q3 + · · ·

Observe that:

196884 = 196883 + 1

21493760 = 21296786 + 196883 + 1

864299970 = 842609326 + 21296786 + 2× 196883 + 2× 1.

Numbers on the RHS are dimensions of irreducible
representations of the monster!

These connections led Conway and Thompson to
conjecture the existence of a particular graded module on
which M acts naturally. What is more this action yields a
‘natural construction’ of the Fourier expansion of different
modular functions.
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The Bootleggers

John Conway John Thompson Richard Borcherds

Describing the experience of proving the Moonshine
conjectures, Borcherds remarked:

I sometimes wonder if this is the feeling you get when
you take certain drugs. I don’t actually know, as I
have not tested this theory of mine.
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All sorted then?

We’ve missed out a lot of material...

... Signalizer functors, p-fusion, abstract fusion systems,
N-groups, minimal simple groups, the Bender method, strong
embedding, the generalized Fitting group, Thompson
factorization, the Z ∗-theorem, Aschbacher Blocks,
3-transposition groups, the Leech lattice, the amalgam method,
Aschbacher and Smith’s quasithin theorem,...

Thanks for coming!
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