Regular maps and simple groups

Regular maps and simple groups

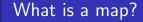
Nick Gill (OU)

July 30, 2013

Joint with M. Conder (Auckland), I. Short (OU), J. Širáň (OU).

What is a map?

Regular maps and simple groups



Regular maps and simple groups

Let $\mathcal{G} = (V, E)$ be a graph.

What is a map?

Regular maps and simple groups

Nick Gill (OU)

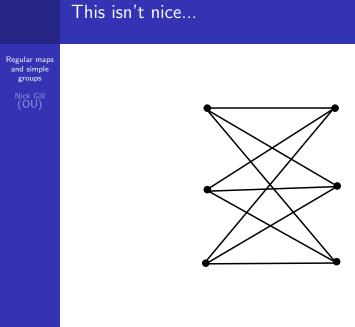
Let $\mathcal{G} = (V, E)$ be a graph. Let \mathcal{S} be a surface (usually, but not always, compact and without boundary).

What is a map?

Regular maps and simple groups

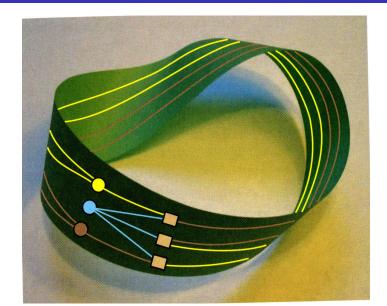
> Nick Gill (OU)

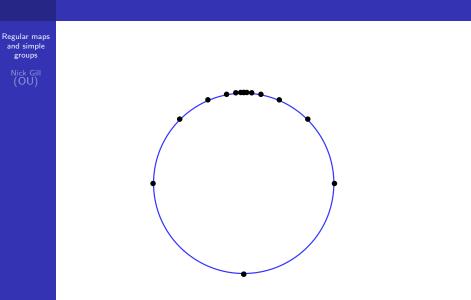
> > Let $\mathcal{G} = (V, E)$ be a graph. Let \mathcal{S} be a surface (usually, but not always, compact and without boundary). A **map** is a 'nice' embedding of \mathcal{G} in \mathcal{S} .



... but this is.

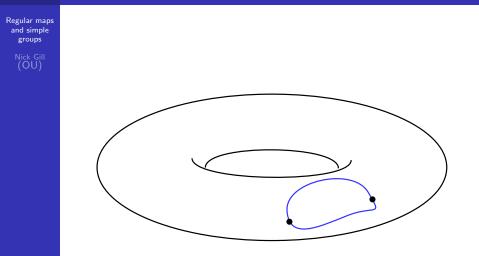
Regular maps and simple groups



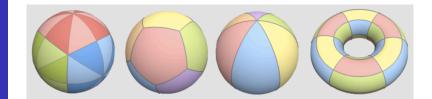


This isn't nice...

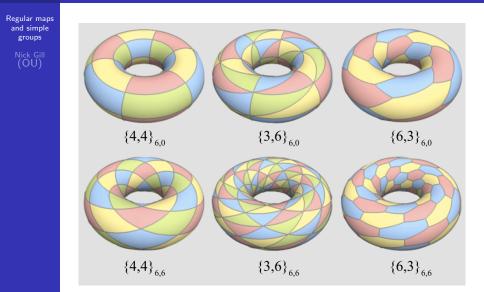
... and neither is this...



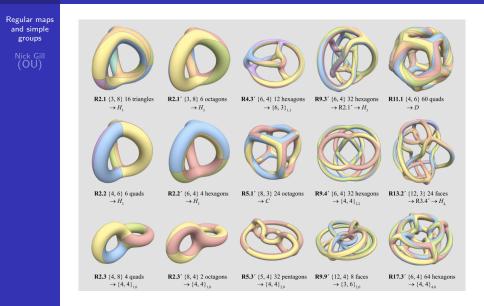
... but these are all lovely



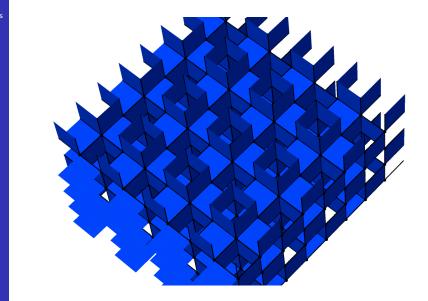
... but these are all lovely



... but these are all lovely



And this one is especially groovy...



Regular maps and simple groups

Regular maps and simple groups

> Nick Gill (OU)

• Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.

Regular maps and simple groups

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where S is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph G is finite.

Regular maps and simple groups

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where S is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph G is finite.
- An automorphism of *M* is a homeomorphism of *S* which preserves the graph *G*.

Regular maps and simple groups

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where S is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph G is finite.
- An automorphism of *M* is a homeomorphism of *S* which preserves the graph *G*. Aut(*M*) is the quotient of the group of automorphisms of *M* by the subgroup of automorphisms which fix *G*.

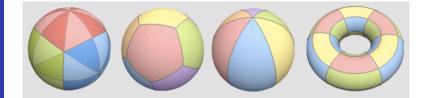
Regular maps and simple groups

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where S is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph G is finite.
- An automorphism of *M* is a homeomorphism of *S* which preserves the graph *G*. Aut(*M*) is the quotient of the group of automorphisms of *M* by the subgroup of automorphisms which fix *G*. In particular Aut(*M*) is a finite group.

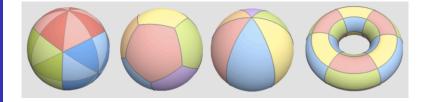
Regular maps and simple groups

- Let $\mathcal{M} = (\mathcal{G}, \mathcal{S})$ be a map.
- We specialise from here on to the situation where S is a compact surface without boundary. The 'nice' condition implies, therefore, that the graph G is finite.
- An automorphism of *M* is a homeomorphism of *S* which preserves the graph *G*. Aut(*M*) is the quotient of the group of automorphisms of *M* by the subgroup of automorphisms which fix *G*. In particular Aut(*M*) is a finite group.
- Fact: Aut(*M*) acts faithfully and semiregularly on the set of flags.

And a flag is...



And a flag is...



... a triple (v, e, f) where v is a vertex, e is an edge, f is a face, and all are incident with each other.

Regular maps and simple groups

■ It is clear that |Aut(*M*)| is less than or equal to the number of flags.

Regular maps and simple groups

- It is clear that |Aut(*M*)| is less than or equal to the number of flags.
- If |Aut(*M*)| equals the number of flags, i.e. Aut(*M*) acts transitively on the set of flags, then we call the map *M* regular.

Regular maps and simple groups

- It is clear that |Aut(*M*)| is less than or equal to the number of flags.
- If |Aut(*M*)| equals the number of flags, i.e. Aut(*M*) acts transitively on the set of flags, then we call the map *M* regular.
- We would like to classify the regular maps.

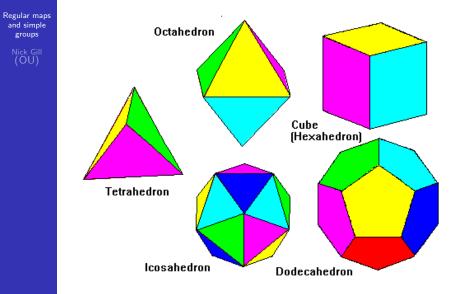
Regular maps and simple groups

- It is clear that |Aut(*M*)| is less than or equal to the number of flags.
- If |Aut(*M*)| equals the number of flags, i.e. Aut(*M*) acts transitively on the set of flags, then we call the map *M* regular.
- We would like to classify the regular maps.
- Encouraging fact: For any g ≥ 2, there are only a finite number of regular maps on a surface of genus g.

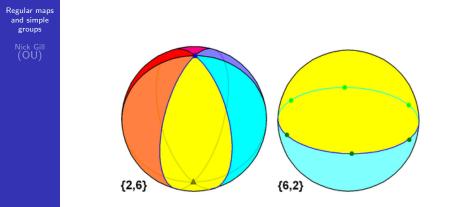
$$g = 0$$
: regular maps on the sphere

Regular maps and simple groups

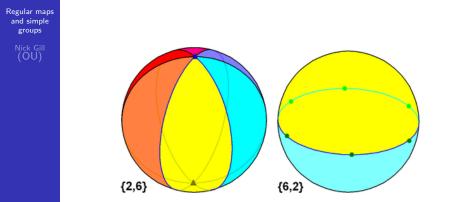
g = 0: regular maps on the sphere



g = 0: regular maps on the sphere



g = 0: regular maps on the sphere



 $\operatorname{Aut}(\mathcal{M})$ is solvable except when \mathcal{M} is the dodecahedron or icosahedron, in which case $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Alt}(5) \times C_2$.

Regular maps and simple groups To answer this we need to define the Euler characteristic χ of a surface $\mathcal{S}:$

Regular maps and simple groups To answer this we need to define the Euler characteristic χ of a surface $\mathcal{S}:$

Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V - E + F$.

Regular maps and simple groups To answer this we need to define the Euler characteristic χ of a surface $\mathcal{S}:$

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \begin{cases} 2 - 2g, & S \text{ orientable;} \\ 2 - g, & S \text{ non-orientable.} \end{cases}$$

Regular maps and simple groups To answer this we need to define the Euler characteristic χ of a surface $\mathcal{S}:$

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \begin{cases} 2 - 2g, & \mathcal{S} \text{ orientable;} \\ 2 - g, & \mathcal{S} \text{ non-orientable.} \end{cases}$$

 Given a map M = (G, S), the embedding of G on S yields such a homeomorphic CW-complex, and so χ can be thought of as a function of the map.

Regular maps and simple groups To answer this we need to define the Euler characteristic χ of a surface \mathcal{S} :

- Given a surface S we consider a homeomorphic CW-complex to obtain $\chi = V E + F$.
- Recall that

$$\chi = \begin{cases} 2 - 2g, & \mathcal{S} \text{ orientable;} \\ 2 - g, & \mathcal{S} \text{ non-orientable.} \end{cases}$$

- Given a map *M* = (*G*, *S*), the embedding of *G* on *S* yields such a homeomorphic CW-complex, and so *χ* can be thought of as a function of the map.
- If \mathcal{M} is regular with $G = \operatorname{Aut}(\mathcal{M})$, then

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right)$$

A result of Breda D'Azevedo, Nedela and Širáň

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

A result of Breda D'Azevedo, Nedela and Širáň

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

Theorem

Suppose that $\chi = -p$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

Theorem

Suppose that $\chi = -p$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

• p = 3 and G = Alt(5) or Sym(5);

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

Theorem

Suppose that $\chi = -p$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 3$$
 and $G = Alt(5)$ or Sym(5);

•
$$p = 7$$
 and $G = PGL_2(7)$ (two of these);

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

Theorem

Suppose that $\chi = -p$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 3$$
 and $G = Alt(5)$ or Sym(5);

•
$$p = 7$$
 and $G = PGL_2(7)$ (two of these);

• p = 13 and $G = PSL_2(13)$.

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p$, for p a prime.

Theorem

Suppose that $\chi = -p$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 3$$
 and $G = Alt(5)$ or Sym(5);

•
$$p = 7$$
 and $G = PGL_2(7)$ (two of these);

•
$$p = 13$$
 and $G = PSL_2(13)$.

There are several infinite families of regular maps with $\chi = -p$ and solvable automorphism groups.

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p^2$, for p a prime.

Regular maps and simple groups

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p^2$, for p a prime.

Theorem

Suppose that $\chi = -p^2$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

• p = 2 and $G = PGL_2(7)$;

Regular maps and simple groups

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p^2$, for p a prime.

Theorem

Suppose that $\chi = -p^2$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 2$$
 and $G = PGL_2(7)$;

•
$$p = 2$$
 and $G = Alt(5) \times C_2$ (two of these);

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p^2$, for p a prime.

Theorem

Suppose that $\chi = -p^2$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 2$$
 and $G = PGL_2(7)$;

•
$$p = 2$$
 and $G = Alt(5) \times C_2$ (two of these);

• p = 7 and $G = PSL_2(13)$.

Regular maps and simple groups

> Nick Gill (OU)

We have a full classification of regular maps \mathcal{M} on surfaces with $\chi = -p^2$, for p a prime.

Theorem

Suppose that $\chi = -p^2$ and $G = Aut(\mathcal{M})$ is non-solvable. Then one of the following holds:

•
$$p = 2$$
 and $G = PGL_2(7)$;

•
$$p = 2$$
 and $G = Alt(5) \times C_2$ (two of these);

•
$$p = 7$$
 and $G = PSL_2(13)$.

Even if we drop the non-solvable condition we can still conclude that p = 2, 3 or 7.

A little group theory

Regular maps and simple groups

Let G be a finite group.

A little group theory

Regular maps and simple groups

Nick Gill (OU)

> Let G be a finite group. A *composition series* for G is a chain of subgroups,

$$\{1\} = G_0 \lhd G_1 \lhd G_2 \lhd \cdots \lhd G_{k-1} \leq G_k = G$$

such that G_1/G_0 , $G_2/G_1, \ldots, G_k/G_{k-1}$ are simple.

A little group theory

Regular maps and simple groups

Nick Gill (OU)

> Let G be a finite group. A *composition series* for G is a chain of subgroups,

$$\{1\} = G_0 \lhd G_1 \lhd G_2 \lhd \cdots \lhd G_{k-1} \leq G_k = G$$

such that G_1/G_0 , $G_2/G_1, \ldots, G_k/G_{k-1}$ are simple. G is defined to be *solvable* if G has a composition series such that all quotients are abelian.

Regular maps and simple groups

> Nick Gill (OU)

Classification of Finite Simple Groups

Regular maps and simple groups

> Nick Gill (OU)

Classification of Finite Simple Groups

If G is simple, then G is isomorphic to one of the following:

• *C_p*, a cyclic group of prime order.

Nick Gill (OU)

Classification of Finite Simple Groups

- *C_p*, a cyclic group of prime order.
- Alt(n), an alternating group on $n \ge 5$ letters.

Nick Gill (OU)

Classification of Finite Simple Groups

- *C_p*, a cyclic group of prime order.
- Alt(n), an alternating group on $n \ge 5$ letters.
- $G_r(q)$, a group of Lie type. E.g. $PSL_n(q)$, $PSp_n(q)$, $E_6(q)$.

Nick Gill (OU)

Classification of Finite Simple Groups

- *C_p*, a cyclic group of prime order.
- Alt(n), an alternating group on $n \ge 5$ letters.
- $G_r(q)$, a group of Lie type. E.g. $PSL_n(q)$, $PSp_n(q)$, $E_6(q)$.
- One of 26 sporadic groups.

Regular maps and simple groups

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Regular maps and simple groups

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

Regular maps and simple groups

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

G is complicated \longleftrightarrow Interesting non-abelian simple groups occur as composition factors of G.

Regular maps and simple groups

> Nick Gill (OU)

Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

General principle

If G is complicated then so is χ .

G is complicated \longleftrightarrow Interesting non-abelian simple groups occur as composition factors of *G*. χ is complicated \longleftrightarrow The prime factorization of χ has many primes and/or high exponents.

Regular maps and simple groups Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Regular maps and simple groups Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

Let T = G_r(p^y) be a simple group of Lie type and a composition factor of G;

Regular maps and simple groups Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

- Let T = G_r(p^y) be a simple group of Lie type and a composition factor of G;
- Let $\chi = \pm p_1^{a_1} \cdots p_k^{a_k}$ with $a_1 \ge a_2 \ge \cdots$.

Regular maps and simple groups Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

- Let T = G_r(p^y) be a simple group of Lie type and a composition factor of G;
- Let $\chi = \pm p_1^{a_1} \cdots p_k^{a_k}$ with $a_1 \ge a_2 \ge \cdots$.

Theorem (G., 2012)

$$k \ge \left\{ egin{array}{ll} r, & q > 3 \ r-1, & q = 3 \ r-2, & q = 2. \end{array}
ight.$$

Regular maps and simple groups Suppose that G is the automorphism group of a regular map on a surface of Euler characteristic χ .

- Let T = G_r(p^y) be a simple group of Lie type and a composition factor of G;
- Let $\chi = \pm p_1^{a_1} \cdots p_k^{a_k}$ with $a_1 \ge a_2 \ge \cdots$.

Theorem (G., 2012)

$$k \ge \left\{ egin{array}{ll} r, & q > 3 \ r-1, & q = 3 \ r-2, & q = 2. \end{array}
ight.$$

Theorem (Conder, G., Short, Širáň, 2013)

$$a_1 \geq y-2.$$

Regular maps and simple groups

> Nick Gill (OU)

• For simplicity, assume that $G = G_r(p^y)$. We must show that $k \ge r$.

Regular maps and simple groups

- For simplicity, assume that G = G_r(p^y). We must show that k ≥ r.
- We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

Regular maps and simple groups

- For simplicity, assume that G = G_r(p^y). We must show that k ≥ r.
- We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

■ It is easy to see that |G_e| = 4. Furthermore G_v and G_f contain cyclic groups of index 2.

Regular maps and simple groups

- For simplicity, assume that G = G_r(p^y). We must show that k ≥ r.
- We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

- It is easy to see that |G_e| = 4. Furthermore G_v and G_f contain cyclic groups of index 2.
- Writing m and n for the order of these two cyclic groups we obtain

$$\chi = -|G|\frac{mn - 2m - 2n}{4mn} = -\frac{|G|}{4[m, n]} \left(\frac{mn - 2m - 2n}{(m, n)}\right)$$

Regular maps and simple groups

- For simplicity, assume that G = G_r(p^y). We must show that k ≥ r.
- We saw earlier that

$$\chi = V - E + F = |G| \left(\frac{1}{|G_v|} - \frac{1}{|G_e|} + \frac{1}{|G_f|} \right).$$

- It is easy to see that |G_e| = 4. Furthermore G_v and G_f contain cyclic groups of index 2.
- Writing m and n for the order of these two cyclic groups we obtain

$$\chi = -|G|\frac{mn - 2m - 2n}{4mn} = -\frac{|G|}{4[m, n]} \left(\frac{mn - 2m - 2n}{(m, n)}\right)$$

 It is sufficient to prove that ^{|G|}/_{4[m,n]} is divisible by r distinct primes.

Aside: The prime graph of a group

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has

Aside: The prime graph of a group

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has
■ vertices p₁,..., p_k corresponding to primes dividing |G|;

Aside: The prime graph of a group

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has

- vertices p_1, \ldots, p_k corresponding to primes dividing |G|;
- two vertices p_i, p_j joined by an edge if and only if G contains an element of order p_ip_j.

Regular maps and simple groups

- Let G be a finite group. The prime graph of G, Prime(G), has
 - vertices p_1, \ldots, p_k corresponding to primes dividing |G|;
 - two vertices p_i, p_j joined by an edge if and only if G contains an element of order p_ip_j.

Alt(7)
$$3 \cdot 5$$

2 $\cdot 7$

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has

- vertices p_1, \ldots, p_k corresponding to primes dividing |G|;
- two vertices p_i, p_j joined by an edge if and only if G contains an element of order p_ip_j.

Alt(8)
$$3 \xrightarrow{5} 2 \xrightarrow{7} 7$$

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has

- vertices p_1, \ldots, p_k corresponding to primes dividing |G|;
- two vertices p_i, p_j joined by an edge if and only if G contains an element of order p_ip_j.

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group. The prime graph of G, Prime(G), has

- vertices p_1, \ldots, p_k corresponding to primes dividing |G|;
- two vertices p_i, p_j joined by an edge if and only if G contains an element of order p_ip_j.

Alt(9)
$$3 \xrightarrow{5} 2 \xrightarrow{7} 7$$

Observe that if $g \in G$, then the primes dividing the order of g must all be connected in Prime(G).

• Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.

Regular maps and simple groups

- Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.
- Some facts:

Regular maps and simple groups

- Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.
- Some facts:
 - |G| is divisible by at least $\sim r$ odd primes;

Regular maps and simple groups

- Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.
- Some facts:
 - |G| is divisible by at least $\sim r$ odd primes;
 - At least $\sim \frac{r}{2}$ of these correspond to non-cyclic Sylow subgroups;

Regular maps and simple groups

- Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.
- Some facts:
 - |G| is divisible by at least $\sim r$ odd primes;
 - At least $\sim \frac{r}{2}$ of these correspond to non-cyclic Sylow subgroups;
 - At least ~ ^r/₂ of the remaining primes are totally disconnected in Prime(G). (Vasil'ev-Vdovin)

Regular maps and simple groups

- Consider the quantity $\frac{|G|}{4[m,n]}$ where m and n are the orders of some elements in G.
- Some facts:
 - |G| is divisible by at least $\sim r$ odd primes;
 - At least $\sim \frac{r}{2}$ of these correspond to non-cyclic Sylow subgroups;
 - At least ~ ^r/₂ of the remaining primes are totally disconnected in Prime(G). (Vasil'ev-Vdovin)
- We conclude that χ is divisible by at least $\sim r-2$ primes.

Regular maps and simple groups

> Nick Gil (OU)

E1 We can state versions of Theorems 1 and 2 for hypermaps;

Regular maps and simple groups

- E1 We can state versions of Theorems 1 and 2 for hypermaps;
- E2 If the surface is orientable, then we can state versions of Theorems 1 and 2 for orientably-regular maps;

Regular maps and simple groups

- E1 We can state versions of Theorems 1 and 2 for hypermaps;
- E2 If the surface is orientable, then we can state versions of Theorems 1 and 2 for orientably-regular maps;
- E3 We can state versions of Theorems 1 and 2 for sporadic and alternating groups;

Regular maps and simple groups

- E1 We can state versions of Theorems 1 and 2 for hypermaps;
- E2 If the surface is orientable, then we can state versions of Theorems 1 and 2 for orientably-regular maps;
- E3 We can state versions of Theorems 1 and 2 for sporadic and alternating groups;
- A1 If we assume that G is almost simple, then we can completely classify regular maps with

$$\chi = -p^{a}, \ -2p^{a}, \ -2p_{1}^{a_{1}}p_{2}^{a_{2}}\dots;$$

Regular maps and simple groups

- E1 We can state versions of Theorems 1 and 2 for hypermaps;
- E2 If the surface is orientable, then we can state versions of Theorems 1 and 2 for orientably-regular maps;
- E3 We can state versions of Theorems 1 and 2 for sporadic and alternating groups;
- A1 If we assume that G is almost simple, then we can completely classify regular maps with

$$\chi = -p^{a}, \ -2p^{a}, \ -2p_{1}^{a_{1}}p_{2}^{a_{2}}\dots;$$

A2 We are in the process of trying to recover the general classification of regular maps when $\chi = -p^2$, and extending it to $\chi = -p^3, -p^4, \ldots$

Regular maps and simple groups

Let G be a finite group.

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group.

■ *F*(*G*), the **Fitting subgroup** of *G*, is the largest normal nilpotent subgroup of *G*.

Regular maps and simple groups

- Let G be a finite group.
 - *F*(*G*), the **Fitting subgroup** of *G*, is the largest normal nilpotent subgroup of *G*.
 - $F(G) = P_1 \times P_2 \times \cdots \otimes P_k$, where P_i is the unique Sylow t_i -subgroup of F(G).

Regular maps and simple groups

Nick Gill (OU)

- Let G be a finite group.
 - *F*(*G*), the **Fitting subgroup** of *G*, is the largest normal nilpotent subgroup of *G*.
 - $F(G) = P_1 \times P_2 \times \cdots \otimes P_k$, where P_i is the unique Sylow t_i -subgroup of F(G).

Theorem

If G is solvable, then $C_G(F(G)) = Z(F(G))$.

Regular maps and simple groups

Nick Gill (OU)

- Let G be a finite group.
 - *F*(*G*), the **Fitting subgroup** of *G*, is the largest normal nilpotent subgroup of *G*.
 - $F(G) = P_1 \times P_2 \times \cdots \otimes P_k$, where P_i is the unique Sylow t_i -subgroup of F(G).

Theorem

If G is solvable, then $C_G(F(G)) = Z(F(G))$.

This is not true in general, e.g. $SL_2(5)$.

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group.

Regular maps and simple groups

> Nick Gill (OU)

Let G be a finite group.

• A group H is **quasisimple** if H = H' (it's perfect) and H/Z(H) is non-abelian simple. E.g. $SL_2(5)$.

Regular maps and simple groups

Let G be a finite group.

- A group *H* is **quasisimple** if H = H' (it's perfect) and H/Z(H) is non-abelian simple. E.g. SL₂(5).
- A subgroup *H* is **subnormal** if there exists a chain

$$H \lhd H_1 \lhd H_2 \cdots \lhd H_k = G.$$

Regular maps and simple groups

Let G be a finite group.

- A group *H* is **quasisimple** if H = H' (it's perfect) and H/Z(H) is non-abelian simple. E.g. $SL_2(5)$.
- A subgroup H is subnormal if there exists a chain

$$H \lhd H_1 \lhd H_2 \cdots \lhd H_k = G.$$

• *K* is a **component** of *G* if *K* is a subnormal quasisimple subgroup of *G*.

Regular maps and simple groups

Let G be a finite group.

- A group *H* is **quasisimple** if H = H' (it's perfect) and H/Z(H) is non-abelian simple. E.g. SL₂(5).
- A subgroup *H* is **subnormal** if there exists a chain

$$H \lhd H_1 \lhd H_2 \cdots \lhd H_k = G.$$

- *K* is a **component** of *G* if *K* is a subnormal quasisimple subgroup of *G*.
- $F^*(G)$, the **Generalized Fitting Subgroup** of G equals

$$F(G)K_1K_2\cdots K_t$$

where K_1, \ldots, K_t are the components of G.

A theorem of Bender

A theorem of Bender

Theorem

If G is a finite group, then $C_G(F^*(G)) = Z(F^*(G))$.

A theorem of Bender

Regular maps and simple groups

Nick Gill (OU)

Theorem

If G is a finite group, then $C_G(F^*(G)) = Z(F^*(G))$.

To understand the structure of G we need to understand the automorphisms of some quasisimple groups, and the automorphisms of some p-groups.

Regular maps and simple groups

Suppose that G = Aut(M), a regular map with $\chi = -p^a$.

Regular maps and simple groups

> Nick Gill (OU)

Suppose that G = Aut(M), a regular map with $\chi = -p^a$.

$$F^*(G) = \left\{ egin{array}{ll} C imes D imes P, ext{ or } \ C imes P imes ext{PSL}_2(q) ext{ with } q ext{ odd.} \end{array}
ight.$$

Regular maps and simple groups

Suppose that G = Aut(M), a regular map with $\chi = -p^a$.

$$F^*(G) = \left\{ egin{array}{l} C imes D imes P, ext{ or } \ C imes P imes ext{PSL}_2(q) ext{ with } q ext{ odd.} \end{array}
ight.$$

Theorem

If G is solvable, then G has a normal p-subgroup N such that G/N is almost Sylow cyclic.

Regular maps and simple groups

Suppose that G = Aut(M), a regular map with $\chi = -p^a$.

$$F^*(G) = \left\{ egin{array}{ll} C imes D imes P, ext{ or } \ C imes P imes ext{PSL}_2(q) ext{ with } q ext{ odd.} \end{array}
ight.$$

Theorem

If G is solvable, then G has a normal p-subgroup N such that G/N is almost Sylow cyclic.

In particular M is a cover of a known regular map.

Regular maps and simple groups

Thanks for coming!