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What is a map?

Let G = (V ,E ) be a graph.
Let S be a surface (usually, but not always, compact and
without boundary).
A map is a ‘nice’ embedding of G in S.
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This isn’t nice...
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... but this is.
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... and neither is this...
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And this one is especially groovy...
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Automorphisms

LetM = (G,S) be a map.

We specialise from here on to the situation where S is a
compact surface without boundary. The ‘nice’ condition
implies, therefore, that the graph G is finite.

An automorphism ofM is a homeomorphism of S which
preserves the graph G.

Aut(M) is the quotient of the
group of automorphisms ofM by the subgroup of
automorphisms which fix G. In particular Aut(M) is a
finite group.

Fact: Aut(M) acts faithfully and semiregularly on the set
of flags.
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And a flag is...

... a triple (v , e, f ) where v is a vertex, e is an edge, f is a
face, and all are incident with each other.
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Regular maps

It is clear that |Aut(M)| is less than or equal to the
number of flags.

If |Aut(M)| equals the number of flags, i.e. Aut(M)
acts transitively on the set of flags, then we call the map
M regular.

We would like to classify the regular maps.

Encouraging fact: For any g ≥ 2, there are only a finite
number of regular maps on a surface of genus g .



Regular maps
and simple
groups

Nick Gill
(OU)

Regular maps

It is clear that |Aut(M)| is less than or equal to the
number of flags.

If |Aut(M)| equals the number of flags, i.e. Aut(M)
acts transitively on the set of flags, then we call the map
M regular.

We would like to classify the regular maps.

Encouraging fact: For any g ≥ 2, there are only a finite
number of regular maps on a surface of genus g .



Regular maps
and simple
groups

Nick Gill
(OU)

Regular maps

It is clear that |Aut(M)| is less than or equal to the
number of flags.

If |Aut(M)| equals the number of flags, i.e. Aut(M)
acts transitively on the set of flags, then we call the map
M regular.

We would like to classify the regular maps.

Encouraging fact: For any g ≥ 2, there are only a finite
number of regular maps on a surface of genus g .



Regular maps
and simple
groups

Nick Gill
(OU)

Regular maps

It is clear that |Aut(M)| is less than or equal to the
number of flags.

If |Aut(M)| equals the number of flags, i.e. Aut(M)
acts transitively on the set of flags, then we call the map
M regular.

We would like to classify the regular maps.

Encouraging fact: For any g ≥ 2, there are only a finite
number of regular maps on a surface of genus g .



Regular maps
and simple
groups

Nick Gill
(OU)

g = 0: regular maps on the sphere

Aut(M) is solvable except whenM is the dodecahedron or
icosahedron, in which case Aut(M) ∼= Alt(5)× C2.
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Why so few non-solvable groups?

To answer this we need to define the Euler characteristic χ of a
surface S:

Given a surface S we consider a homeomorphic
CW-complex to obtain χ = V − E + F .

Recall that

χ =

{
2− 2g , S orientable;
2− g , S non-orientable.

Given a mapM = (G,S), the embedding of G on S yields
such a homeomorphic CW-complex, and so χ can be
thought of as a function of the map.

IfM is regular with G = Aut(M), then

χ = V − E + F = |G |
(

1

|Gv |
− 1

|Ge |
+

1

|Gf |

)
.
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A result of Breda D’Azevedo, Nedela and Širáň

We have a full classification of regular mapsM on surfaces
with χ = −p, for p a prime.

Theorem

Suppose that χ = −p and G = Aut(M) is non-solvable. Then
one of the following holds:

p = 3 and G = Alt(5) or Sym(5);

p = 7 and G = PGL2(7) (two of these);

p = 13 and G = PSL2(13).

There are several infinite families of regular maps with χ = −p
and solvable automorphism groups.
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A result of Conder, Potočnik and Širáň

We have a full classification of regular mapsM on surfaces
with χ = −p2, for p a prime.

Theorem

Suppose that χ = −p2 and G = Aut(M) is non-solvable.
Then one of the following holds:

p = 2 and G = PGL2(7);

p = 2 and G = Alt(5)× C2 (two of these);

p = 7 and G = PSL2(13).

Even if we drop the non-solvable condition we can still
conclude that p = 2, 3 or 7.
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A little group theory

Let G be a finite group.

A composition series for G is a chain of subgroups,

{1} = G0 C G1 C G2 C · · ·C Gk−1 ≤ Gk = G

such that G1/G0, G2/G1, . . . ,Gk/Gk−1 are simple.
G is defined to be solvable if G has a composition series such
that all quotients are abelian.
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The Classification of Finite Simple Groups

Classification of Finite Simple Groups

If G is simple, then G is isomorphic to one of the following:

Cp, a cyclic group of prime order.

Alt(n), an alternating group on n ≥ 5 letters.

Gr (q), a group of Lie type. E.g. PSLn(q),PSpn(q),E6(q).

One of 26 sporadic groups.
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A meta-mathematical principle

Suppose that G is the automorphism group of a regular map
on a surface of Euler characteristic χ.

General principle

If G is complicated then so is χ.

G is complicated ←→ Interesting non-abelian simple groups
occur as composition factors of G .
χ is complicated ←→ The prime factorization of χ has many
primes and/or high exponents.
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Two theorems

Suppose that G is the automorphism group of a regular map
on a surface of Euler characteristic χ.

Let T = Gr (p
y ) be a simple group of Lie type and a

composition factor of G ;
Let χ = ±pa11 · · · pkak with a1 ≥ a2 ≥ · · · .

Theorem (G., 2012)

k ≥


r , q > 3
r − 1, q = 3
r − 2, q = 2.

Theorem (Conder, G., Short, Širáň, 2013)

a1 ≥ y − 2.
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Part 1 of the proof of Theorem 1

For simplicity, assume that G = Gr (p
y ). We must show

that k ≥ r .

We saw earlier that

χ = V − E + F = |G |
(

1

|Gv |
− 1

|Ge |
+

1

|Gf |

)
.

It is easy to see that |Ge | = 4. Furthermore Gv and Gf

contain cyclic groups of index 2.

Writing m and n for the order of these two cyclic groups
we obtain

χ = −|G |mn − 2m − 2n

4mn
= − |G |

4[m, n]

(
mn − 2m − 2n

(m, n)

)
.

It is sufficient to prove that |G |
4[m,n] is divisible by r distinct

primes.
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Aside: The prime graph of a group

Let G be a finite group. The prime graph of G , Prime(G ), has

vertices p1, . . . , pk corresponding to primes dividing |G |;
two vertices pi , pj joined by an edge if and only if G
contains an element of order pipj .

Observe that if g ∈ G , then the primes dividing the order of g
must all be connected in Prime(G ).
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Part 2 of the proof of Theorem 1

Consider the quantity |G |
4[m,n] where m and n are the orders

of some elements in G .

Some facts:

|G | is divisible by at least ∼ r odd primes;
At least ∼ r

2 of these correspond to non-cyclic Sylow
subgroups;
At least ∼ r

2 of the remaining primes are totally
disconnected in Prime(G ). (Vasil’ev-Vdovin)

We conclude that χ is divisible by at least ∼ r−2 primes.
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Extensions and applications

E1 We can state versions of Theorems 1 and 2 for hypermaps;

E2 If the surface is orientable, then we can state versions of
Theorems 1 and 2 for orientably-regular maps;

E3 We can state versions of Theorems 1 and 2 for sporadic
and alternating groups;

A1 If we assume that G is almost simple, then we can
completely classify regular maps with

χ = −pa, −2pa, −2pa11 pa22 . . . ;

A2 We are in the process of trying to recover the general
classification of regular maps when χ = −p2, and
extending it to χ = −p3,−p4, . . .
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The Fitting Group

Let G be a finite group.

F (G ), the Fitting subgroup of G , is the largest normal
nilpotent subgroup of G .

F (G ) = P1 × P2 × · · ·Pk , where Pi is the unique Sylow
ti -subgroup of F (G ).

Theorem

If G is solvable, then CG (F (G )) = Z (F (G )).

This is not true in general, e.g. SL2(5).
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The Generalized Fitting Group

Let G be a finite group.

A group H is quasisimple if H = H ′ (it’s perfect) and
H/Z (H) is non-abelian simple. E.g. SL2(5).

A subgroup H is subnormal if there exists a chain

H C H1 C H2 · · ·C Hk = G .

K is a component of G if K is a subnormal quasisimple
subgroup of G .

F ∗(G ), the Generalized Fitting Subgroup of G equals

F (G )K1K2 · · ·Kt

where K1, . . . ,Kt are the components of G .
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A theorem of Bender

Theorem

If G is a finite group, then CG (F
∗(G )) = Z (F ∗(G )).

To understand the structure of G we need to understand the
automorphisms of some quasisimple groups, and the
automorphisms of some p-groups.
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F ∗(G ) and regular maps

Suppose that G = Aut(M), a regular map with χ = −pa.

F ∗(G ) =

{
C × D × P, or
C × P × PSL2(q) with q odd.

Theorem

If G is solvable, then G has a normal p-subgroup N such that
G/N is almost Sylow cyclic.

In particular M is a cover of a known regular map.



Regular maps
and simple
groups

Nick Gill
(OU)

F ∗(G ) and regular maps

Suppose that G = Aut(M), a regular map with χ = −pa.

F ∗(G ) =

{
C × D × P, or
C × P × PSL2(q) with q odd.

Theorem

If G is solvable, then G has a normal p-subgroup N such that
G/N is almost Sylow cyclic.

In particular M is a cover of a known regular map.



Regular maps
and simple
groups

Nick Gill
(OU)

F ∗(G ) and regular maps

Suppose that G = Aut(M), a regular map with χ = −pa.

F ∗(G ) =

{
C × D × P, or
C × P × PSL2(q) with q odd.

Theorem

If G is solvable, then G has a normal p-subgroup N such that
G/N is almost Sylow cyclic.

In particular M is a cover of a known regular map.



Regular maps
and simple
groups

Nick Gill
(OU)

F ∗(G ) and regular maps

Suppose that G = Aut(M), a regular map with χ = −pa.

F ∗(G ) =

{
C × D × P, or
C × P × PSL2(q) with q odd.

Theorem

If G is solvable, then G has a normal p-subgroup N such that
G/N is almost Sylow cyclic.

In particular M is a cover of a known regular map.



Regular maps
and simple
groups

Nick Gill
(OU)

Thanks for coming!


