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18. Orthogonal groups

We will not give a full treatment of the orthogonal groups, as we do not have time, but we’ll try and give
a broad overview. Throughout this section V is an n-dimensional vector space over the field k = Fq and
Q : V → Fq is a non-degenerate quadratic form.

Recall first that we have the following possibilities for (V,Q). (Note that, in all cases, for i = 1, . . . , r, (vi, wi)
are mutually orthogonal hyperbolic pairs, with Q(vi) = Q(wi) = 0.)

(O+
2r) with basis {v1, w1, . . . , vr, wr}.

(O2r+1) with basis {v1, w1, . . . , vr, wr, u} where �u� is anisotropic and orthogonal to �v1, w2, . . . , vr, wr�. We can
prescribe, moreover, that Q(u) = 1 or, if q is odd, Q(u) is 1 or a non-square.

(O−
2r+2) with basis {v1, w1, . . . , vr, wr, u, u

�} where �u, u�� is anisotropic and orthogonal to �v1, w2, . . . , vr, wr�.
We can prescribe, moreover, that Q(u) = 1, Q(u�) = a and x2 + x + a is irreducible in Fq[x].

Note that, although there are two non-isomorphic spaces O2r+1, the corresponding polar spaces, and hence
the corresponding isometry (resp. similarly/ semisimilarity) groups are all isomorphic.

This remark allows us to make the following definitions. Note that, throughout,

ε is

�
+ or −, if n is even;
blank, if n is odd.

• ΓOε
n(q) is the semisimilarity group of Q;

• GOε
n(q) is the similarity group of Q;

• Oε
n(q) is the isometry group of Q;

• SOε
n(q) is the special isometry group of Q, i.e. it equals Oε

n(q) ∩ SLn(q).
• Ωε

n(q) = (O�
n(q))�, a subgroup of SOε

n(q) of index 1 or 2.

For all of the listed groups X, there is a projective version PX = X/(X ∩ K) where K is the set of scalar
matrices.46

The groups we’re primarily interested in are PΩε
n(q) as these are simple unless n and q are in a certain small

range. Our treatment begins similarly to the other classical groups:

Lemma 18.1.

(1) Let xε
n be the number of non-trivial singular vectors. Then

• xε
2m = (qm − ε1)(qm−1 + ε1);

• x2m+1 = q2m − 1.
(2) The number of hyperbolic pairs is xε

n · qn−2.

Proof. Clearly x1 = x−
2 = 0. On the other hand, a space of type O+

2 is a hyperbolic line, thus if (v, w) is a
hyperbolic pair, then Q(av + bw) = ab and so the singular vectors lie in �v� ∪ �w� and x+

2 = 2(q − 1).
Now for any n ≥ 3, an orthogonal space admits a basis which is an orthogonal direct sum of a set of mutually

orthgonal hyperbolic lines with one of the spaces already covered. Consider the different cases in turn.

(O+
2m) with Q(

�
aivi +

�
biwi) =

�
aibi. Then Q(v) = 0 iff either

– a1 = 0, b1 is anything and the ‘tail’ of the vector in O+
2r−2 is singular. This gives q(x+

2m−2 + 1) − 1
possibilities. (The ‘+1’ and the ‘−1’ are there to account for zero vectors.)

– a1 �= 0 and b1 = a−1
1

�m
i=2 biwi. This gives (q − 1)q2m−2 possibilities.

We conclude that x+
2m = (q − 1)q2m−2 + q(x+

2m−2 + 1) − 1 and the result follows by induction.
(O2r+1) Exactly the same reasoning as before implies that

x−
2m = (q − 1)q2m−2 + q(x+

2m−21) − 1

and the result follows by induction.
(O−

2r+2) This time we obtain that

x2m+1 = (q − 1)q2m−2 + q(x+
2m−11) − 1

and the result follows.

46Some authors label orthogonal groups slightly differently. I’ve chosen terminology that is consistent with [KL90] but, for
instance, some people write GOε

n(q) for the isometry group of Q, rather than the similarity group.
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To calculate the number of hyperbolic pairs (v, w), simply observe that the number of choices for the first
entry v is xn. To find w we choose any vector in the complement of ker(βv) where βv : V → k, w �→ β(v, w).
Since βv is a non-zero linear functional, its kernel has dimension n − 1 and the number of vectors in the
complement of the kernel is, therefore, qn−qn−1. Now we must restrict to those elements for which β(v, w) = 1
and we obtain 1

q−1
(qn − qn−1) as required. �

We will use Lemma 18.1 to calculate the size of Oε
n(q) using induction on n. The base cases are treated in

the following exercise.

(E18.1) O1(q) = {±I} and Oε
2(q) ∼= D2(q−ε1).

Lemma 18.2.

• |Oε
2m(q)| = 2qm(m−1)(qm − ε1)

m−1�
i=1

(q2i − 1).

• |O2m+1(q)| = (2, q − 1)qm
2

m�
i=1

(q2i − 1).

Proof. As in previous sections we use the fact (which follows from Witt’s Lemma) that Isom(Q) acts regularly
on the set of orthogonal bases. To count orthogonal bases we choose (x, y) to be a hyperbolic pair and invoke
Lemma 18.1, before using induction to count the number of orthogonal bases in �x, y�⊥. The result follows,
using (E18.1) for the base case. �

(E18.2*) Prove that if g ∈ Oε
n(q), then det(g) = ±1. Prove that −I ∈ Oε

n(q).
Conclude that

|SOε
n(q)| = |POε

n(q)| =
1

(2, q − 1)
|Oε

n(q)|.

Lemma 18.3.

(1) If q is even, then Ω2m+1(q) ∼= Sp2m(q).
(2) If q is odd, then PΩ2m+1(q) and PSp2m+1(q) have the same order. If, in addition m > 2, then

PΩ2m+1(q) �∼= PSp2m+1(q).

Proof. Let Q be a non-degenerate quadratic form of type O2m+1 and assume that q is even. The polarization
of Q, βQ is alternating and, since the dimension is odd, it must be degenerate. However (E13.14) implies
that Rad(βQ) has dimension 1. Let Rad(βQ) = �z� and choose z so that Q(z) = 1. Now the space V/�z� is
non-degenerate and symplectic of order 2m.

The action of SO2m+1(q) on V induces an action by isometry on V/�z� and we obtain a homomorphism
SO2m+1(q) → Sp2m(q). One can check that the kernel of this homomorphism is trivial, hence we obtain an
embedding. However checking orders we see that the two groups have the same cardinality and the result
follows.

Result (2) follows from the following exercise.

(E18.3)Let q be odd. Show that PSp2m(q) has �m2 �+1 conjugacy classes of involutions, while PΩ2m+1(q)

has m conjugacy classes of involutions.

�

Some remarks about Ω2m+1(q):

• Suppose that q is even. In light of Lemma 18.3 most authors tend not to study Ω2m+1(q), opting instead
to study the isomorphic group Sp2m(q) (see, for instance, [KL90]).

• The proof of Lemma 18.3 implies that, if q is even, then Ω2m+1(q) = SO2m+1(q), and that this group is
simple, except when (m, q) = (1, 2) or (2, 2).

In fact this is the only situation when n < 1 and Ω�
n(q) has index 1 in SO�

n(q). In all other cases,
provided n > 1, |SO�

n(q) : Ω�
n(q)| = 2.

• Suppose that q is odd. (E18.2) implies that SO2m+1(q) does not contain any scalar matrices and, in
particular, we have that

PSO2m+1(q) = SO2m+1(q) and PΩ2m+1(q) = Ω2m+1(q).



FINITE PERMUTATION GROUPS AND FINITE CLASSICAL GROUPS 85

The following couple of results show in addition that, when n ≤ 6, PΩε
n(q) does not yield a new simple

group. Indeed (E18.1) implies that already for n ≤ 2.

Lemma 18.4. If q is odd, then Ω3(q) ∼= PSL2(q).

Proof. Let Ω be the set of homogeneous polynomials over Fq in variables x and y of degree 2, i.e.47

Ω := {rx2 + sxy + ty2 | r, s, t ∈ Fq}.
Then G = GL2(q) acts on Ω by substitution, i.e. given

g :=

�
a b
c d

�
∈ G

we define

xg = ax + by and yg = cx + dy

and observe that we have a well-defined action.
Indeed (by observing that Ω is a 3-dimensional vector space over Fq) we can check that the group G acts on

Ω as an object from VectFq : we represent an element f = rx2 + sxy + ty2 by the vector
�
r s t

�
and observe

that f g =
�
r s t

�
ρ(g) where

ρ : GL2(q) → GL3(q),

�
a b
c d

�
�→




a2 2ab b2

ac ad + bc bd
c2 2cd d2


 .

Clearly ρ is the associated homomorphism G → Aut(Ω), where Aut(Ω) = GL3(q) is the automorphism group
of Ω as an object from VectFq .

Observe that ker(ρ) = {±I} and define a quadratic form on V = (Fq)
3 via

Q
�
r s t

�
= 4rt− s2.

One can check that Q is non-degenerate and that, for g ∈ G,

Q(fρ(g)) = Q(f)(det(g))2.

This implies that SL2(q) acts on (V,Q) as an object from IVectFq and, by restricting the domain of ρ, we
obtain

ρ : SL2(q) → Aut(V,Q) = Isom(Q) = O3(q).

Now the first isomorphism theorem of groups, implies that

PSL2(q) ∼= SL2(q)/�−I� ∼= Im(ρ) ≤ O3(q)

By checking orders we obtain that Im(ρ) is an index 4 subgroup of O3(q). If q > 3, then the simplicity of
PSL2(q) can be used to prove that Im(ρ) is a normal subgroup of O3(q); indeed it must be the derived subgroup
of O3(q) (since it is perfect and of index 4), and the result follows. For q = 3 we omit the proof. �

The proof of the following lemma is omitted. It is proved in a similar fashion to the last lemma.

Lemma 18.5.

(1) PΩ+
4 (q) ∼= PSL2(q) × PSL2(q).

(2) PΩ−
4 (q) ∼= PSL2(q

2).
(3) PΩ5(q) ∼= PSp4(q).
(4) PΩ+

6 (q) ∼= PSL4(q).
(5) PΩ−

6 (q) ∼= PSU4(q).

47An equivalent formulation is to take Ω to be equal to Sym2(V ), the symmetric square of V = F2
q. Clearly GL2(q) acts on V

naturally via the homomorphism ρ defined below.
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18.1. Simplicity. We conclude with a statement concerning the simplicity of PΩε
n(q). The last two lemmas

imply the result for n = 5 and 6. Indeed they also imply that PΩ3(q) and PΩ−
4 (q) are simple, but we do not

include this in the statement.

Theorem 18.6. If n ≥ 5, then PΩε
n(q) is simple.

The proof of this theorem is a little different to the previous cases we have studied, and we will not write it
down. The following exercise highlights one major difference.

(E18.4*)SOε
n(q) contains a transvection if and only if q is even.

It is worth mentioning a second major hurdle. We have defined Ωε
n(q) to be the derived subgroup of Oε

n(q),
but in practice this definition is not adequate. We will finish by sketching a more explicit definition of Ωε

n(q).
Let v ∈ V be a non-singular vector and define the reflection in v as the map

rv : V → V, x �→ x− βQ(v, x)

Q(v)
v.

(Observe that rv satisfies the first condition for a map to be a transvection, since rv − I has rank 1, but it does
not satisfy the second, since (rv − I)2 �= 0.) One can check that rv ∈ Isom(Q), that r2v = 1, and that

det(rv) =

�
−1, if q is odd;
1, if q is even.

Now the following result is [KL90, Prop 2.5.6].

Lemma 18.7. Isom(Q) = �rv | Q(v) �= 0�, provided Isom(Q) �= O+
4 (2).

Now our definition is as follows:

• Suppose that q is even and that Isom(Q) �= O+
4 (2). We can assume that n is even by Lemma 18.3 and

thus, by (E18.2), Oε
n(q) = SOε

n(q) and that, by Lemma 18.7, every element of SOε
n(q) can be written as

a product of reflections. Now the subgroup of S consisting of products of an even number of reflections
has index 2 in SOε

n(q) and this is the group Ωε
n(q). It is not a priori clear that this action yields an

index 2 subgroup - the next exercise proves that it does when ε = +.

(E18.5*)Prove that this definition yields an index 2 subgroup when ε = + by showing that, in the
natural action of G on Ur, the set of maximal totally singular subspaces, any reflection acts as an odd
permutation on Ur.

• Suppose that q is odd and that n ≥ 2. Consider the group F∗
q/(F∗

q)
2 which has order 2.48 Lemma 18.7

implies that every element of SOε
n(q) can be written as an even number of reflections g = rv1 · · · rvk , for

some non-singular vectors vi. Define the spinor norm,

θ : SOε
n(q) → F∗

q/(F∗
q)

2, g �→
k�

i=1

βQ(vi, vi) (mod (F∗
q)

2).

It turns out that θ is a well-defined homomorphism, and that it is surjective. In particular ker(θ) is an
index 2 subgroup of SOε

n(q), and this is the subgroup Ωε
n(q).

(E18.6)Calculate the order of |Ωε
n(q)| when (n, q, ε) �= (4, 2,+).

We do not give a definition of Ω+
4 (2). Those interested should consult [KL90, p. 30].

48We write (F∗
q)2 for the set of non-zero squares in F∗

q . It is an index 2 subgroup of F∗
q .


