PRODUCTS OF ALTERNATING GROUPS
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1. INTRODUCTION
In this note we prove the following result.

Theorem 1. Suppose that G is a finite group containing two proper sub-
groups H and K such that G = H.K. Suppose, moreover, that H = Alt(m)
and K = Alt(n) with m,n > 5. Then one of the following holds:

(1) G is simple and m,n < 72;

(2) G =Alt(n+1);

(3) G = Alt(m) x Alt(n).

Note that case (1) of Theorem 1 accounts for only a finite number of pos-
sible groups G. The theorem asserts, therefore, that given the suppositions
on G (and barring a finite number of cases) G is isomorphic to the groups
in cases (2) and (3).

Case (3) is, of course, entirely explicit and encompasses an infinite family
of examples. Consider, on the other hand case (2): In this case K is the
stabilizer of a point in the natural action of G = Alt(¢) on ¢ points. Thus H
must be a transitive subgroup of G and any factorization G = K.H arises
from the action of H on the set of cosets of one of its subgroups. The
problem of classifying all such factorizations is equivalent to determining all
(conjugacy classes of) subgroups of G = Alt(¥).

Note that if one imposes the supposition that H N K = {1} in the state-
ment of Theorem 1, then one is asking what groups can be constructed
as the Zappa-Szép product (or knit product) of two finite simple alternating
groups. The extra supposition allows one to strengthen the statement of
(2) to assert that m + 1 = m/! thereby making this case entirely explicit.
To see why this extra assertion follows we use the remarks of the previous
paragraph and observe that, given the extra supposition, the corresponding
transitive action of H must be simply transitive.

1.1. Structure of this note. In §2 we prove Proposition 2 which is a
special case of Theorem 1 dealing with the situation where G is simple. To
obtain an explicit, and reasonably low, upper bound in case (1) we made use
of a result of Maréti which in turn depends on the Classification of Finite
Simple groups (CFSG). An alternative would be to use results of Babai
[Bab81] and [Pyb93] that do not depend on CFSG, but are not so sharp.
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The resulting CFSG-free version of Proposition 2 would start “Suppose that
G is a known finite simple group that is sufficiently large...” and would not
require the presence of case (1).

In §3 we prove Proposition 12 which is a general result concerning the
structure of a group G that is equal to the product of two simple subgroups.
Propositions 2 and 12 together yield a proof of Theorem 1. The proof of
Proposition 12 depends on the Schreier Conjecture (that the outer auto-
morphism group of any finite simple group is solvable), all known proofs of
which depend on CFSG. Thus Theorem 1 uses CFSG in a crucial way.

1.2. Acknowledgments. This note was written in response to a question
posted by Farrokh Shirjian on the website MathOverflow. I wish to thank
Geoff Robinson for sharing his insight into this problem.

2. G 1S SIMPLE

In this section we prove a special case of Theorem 1 pertaining to the sit-
uation where G is simple. The primary result of this section is the following:

Proposition 2. Suppose that G is a finite simple group containing two
proper subgroups H and K such that G = H.K. Suppose, moreover that
H = Alt(m) and K = Alt(n) with m,n > 5. Then one of the following
holds:

(1) m,n <72

(2) G =Alt(n+1).

We will prove Proposition 2 in a series of lemmas. Note that, for y an
integer and p a prime we write |y[, to mean the largest power of p that
divides y; we write |y|,y to mean y/|y|p.

2.1. G is a group of Lie type. The first lemma is little more than an
observation.

Lemma 3. Let p be any prime and n any positive integer.

I < n—1 < Qn_l, p=2

n! P n

S

Lemma 4. Let p be a prime, n a positive integer. If n > 73, then \Alt(n)|g <

|Alt(n)].

Proof. Lemma 3 implies that |Alt(n)[, < 2"~! and one can check that, if

n > 81, then 25775 < inl = |Alt(n)|.
If n > 41, then |Alt(n) |15) < 3™ < |Alt(n)| for every odd prime. Thus,

to lower the bound below 81 we need only calculate the exact size of a Sylow
2-subgroup of Alt(n). A quick check confirms that, provided n > 73, the
result holds.

O
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Lemma 5. Let G be a finite simple group of Lie type. Then there is a prime
p such that, if P is a Sylow p-subgroup of G, then |P|®> > |G|.

Proof. We can take p to be the charateristic of the field over which G is
defined. The result then follows by checking the order formulae for the
different groups of Lie type. O

Lemma 6. Let G be a finite simple group of Lie type and let p be a prime
such that, if P is a Sylow p-subgroup of G, then |P|> > |G|. Suppose that
G contains two subgroups H and K such that G = H.K and suppose that
(K|, > |Hl,. Then |K[3 > |K].

Proof. Let ¢, = |G|p/|K|,. Now observe that

1
ty-|Klp = |G, > |GI5 > |K|56

and we obtain that (2|K|3 > |K|. Now the result follows from observing
that £, < |K|,. O

Putting these lemmas together we obtain the following;:

Proposition 7. Suppose that G is a finite simple group of Lie type contain-
ing two subgroups H and K such that G = H.K. Suppose, moreover that
H = Alt(m) and K = Alt(n) with 5 <m <mn. Then n < 72.

Proof. Observe that, since m < n, we have that |H|, < |K]|, for every prime.
Now lemma 6 implies that |K |IE; > |K| for some prime p. Then Lemma 4
gives the result. O

2.2. Alternating groups. To prove the main result of this section we need
an upper bound on the size of a primitive group that does not contain the
alternating group. There are a variety of possible bounds; we choose to use
the following result of Maréti[Mar02].

Theorem 8. If K is a primitive subgroup of Sym(¥) that does not contain
Alt(0), then |K| < 3°.

We will also need the following fact concerning multiply transitive actions
of the alternative groups. A list of such actions can be found, for instance,
in [Cam99].

Lemma 9. If{ > 8, then the only 2-transitive action of Alt({) is the natural
one on £ points.

Proposition 10. Suppose that G = Alt(¢), and that H and K are two
proper subgroups of G such that G = H.K. Suppose, moreover that H =
Alt(m) and K = Alt(n) with 5 <m <mn. If£> 23, thenn=1/¢—1.

Proof. Let Qk be the largest orbit of K on the points Q = {1,...,/¢}, and
let k£ := |Qk|. The homomorphism associated to this action yields an em-
bedding Alt(n) — Alt(k). We conclude that n < k.
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If & < £, then we obtain that |H| < |K| < 2(|2]!). But in this case
|H| - |K| < |G| which is a contradiction. Thus k > £.

By assumption the action of K on 2 is transitive. If the action is imprim-
itive, then K is isomorphic to a subgroup of a wreath product Sym(a)?Sym(b)
where 1 < a,b < k and ab = k. Since a,b < g one immediately obtains that
n < g and, once again, |H| - |K| < |G|, a contradiction.

Thus the action of K on Qg is primitive. Suppose that K does not
contain Alt(Qg). Then Theorem 8 implies that |H| < |K| < 3¥ < 3°. Thus
|H|.|K| < 9° and, since 9° < |Alt(¢)| for £ > 23 we have a contradiction.

Thus n = k and K = Alt(k). Since k > %, we conclude that K acts
trivially on Q\Qx and so K is precisely the pointwise stabilizer of Q\Q in
G. This implies in particular that H acts (¢ — n)-transitively on . Now
Lemma 9 implies that, since H is a proper subgroup of G, £ —n = 1. O

2.3. Sporadic groups. We give the crudest possible result concerning spo-
radic groups.

Proposition 11. Suppose that G is a sporadic simple group, and that H
and K are two subgroups of G such that G = H. K. Suppose, moreover that
H = Alt(m) and K = Alt(n) with 5 <m <mn. Then n < 32.

Proof. We study the orders of the sporadic groups and note that none of
these orders are divisible by 113. The result follows. O

3. THE GENERAL CASE
In this section we prove the following result:

Proposition 12. Suppose that G is a finite group containing two proper
subgroups H and K such that G = H.K. Suppose, moreover that H and K
are non-abelian simple. Then either G is simple or G = H x K.

Observe that Theorem 1 is an immediate consequence of Propositions 2
and 12.

Proof. Suppose, first of all, that NV is a normal subgroup of G that contains
H. Since G = H.K we conclude that K £ N and thus that K N N = {1}.
Since H is a subgroup of N we conclude, in addition that G = N.K. If H
is a proper subgroup of N, then H.K is a proper subset of GG, which is a
contradiction. Thus H = N, i.e. H is normal in G. Then, since G = H.K
and H N K = {1} we conclude that G = H x K. But now, by considering
F*(G), the generalized Fitting subgroup of G, we conclude immediately that
G = H x K as required.

Suppose, on the other hand, that neither H nor K are subgroups of
any proper normal subgroup of G. If G is simple, then the result fol-
lows from Proposition 2. Assume, then that N is a maximal proper non-
trivial subgroup of G and we will demonstrate a contradiction. Observe,
first, that G/N = S, a non-abelian simple group. Furthermore G/N =
(HN/N).(KN/N).
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Suppose that N7 is a maximal proper non-trivial subgroup of G that is
distinct from N. Then the same argument implies that G/N; = S;, another
non-abelian simple group. Then G/N N N; = S x S;. By considering
cardinalities, one quickly concludes that (without loss of generality) H = S
and K = S; and N = {1}. Thus the result holds in this case.

Assume, then, that NV is the only maximal proper non-trivial subgroup of
G. Note, moreover, that since |K| divides |G/N|, |N| divides |H|. Let M
be a second-maximal normal subgroup of G, i.e. M is a normal subgroup
of G and N is the only proper normal subgroup of G that properly contains
M. Then N/M =2 T x --- x T where d is a finite integer and 7T is a finite

d
simple group. Since N/M is the only proper non-trivial subgroup of G/M,
it is clear that F*(G/M) = N/M. In particular, the outer automorphism
group of T, which is isomorphic to Out(7") ¢ Sym(d) contains a subgroup
isomorphic to G/N = S.

Now we appeal to the Schreier conjecture to conclude that K is not a sub-
group of the outer automorphism group of T" and, therefore, S is isomorphic
to a subgroup of Sym(d). Let p be a prime dividing |T'|. Then p? divides
|N| and so divides |H|, which in turn divides |S| which in turn divides d!.
But this is a contradiction of Lemma 3 and we are done. U
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