
NOTES ON THE POLYNOMIAL FREIMAN-RUZSA CONJECTURE

BEN GREEN

Abstract. Let G be an abelian group. The Polynomial Freiman-Ruzsa conjecture
(PFR) concerns the structure of sets A ⊆ G for which |A + A| 6 K|A|. These notes
provide proofs for the statements made in §10 of [8], and as such constitute a reasonably
detailed discussion of the PFR in the case G = Fn

2 .

Although the purpose of these notes is to furnish proofs for the statements in §10 of [8],
they are reasonably self-contained. For further context see the article [8] itself. A great
deal of the material in this section was communicated to me in person by Imre Ruzsa,
and is reproduced here with his kind permission.

1. tools

In this section we assemble a number of tools which are nowadays regarded as part of
the standard armoury of an additive combinatorialist. The forthcoming book [18] will
serve as a compendium for these and much more besides.

Let us briefly recall some notation concerning sumsets. Suppose that G is an abelian
group and that A,B ⊆ G. Then we write

A+B := {a+ b | a ∈ A, b ∈ B}.
More generally if k, l are any two non-negative integers then we set

kA− lB := {a1 + · · ·+ ak − b1 − · · · − bl | ai ∈ A, bj ∈ B}.
If |A| = n and if |A+A| 6 K|A|, where K is “small” relative to n, then we say that A
has small doubling. We call the ratio |A+ A|/|A| the doubling constant of A.

The first tool is an inequality of Plünnecke [13], a new proof of which was found by
Ruzsa [16]. Expositions of the proof may also be found in [12] or [9].

Proposition 1.1 (Plünnecke’s inequalities). Suppose that A and B are subsets of some
abelian group G, and that |A + B| 6 K|A|. Then for any non-negative integers k, l we
have

|kB − lB| 6 Kk+l|A|.

The second tool is a simple but surprisingly powerful covering lemma of Ruzsa.

Lemma 1.2 (Ruzsa). Let S, T be subsets of an abelian group such that |S+T | 6 K ′|S|.
Then there is a set X ⊆ T , |X| 6 K ′, such that T ⊆ S − S +X.

Proof. Pick a maximal set X ⊆ T such that the sets S+x, x ∈ X, are pairwise disjoint.
Since

⋃
x∈X(S + x) ⊆ S + T , we have |S||X| 6 K ′|S|, which implies that |X| 6 K ′.

Now suppose that t ∈ T . By maximality we there must be some x ∈ X such that
(S + t) ∩ (S + x) 6= ∅, which means that t ∈ S − S + x.
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The next proposition is due, in qualitative form, to Balog and Szemerédi [1]. The version
below is due to Gowers [6, Proposition 12]. Somewhat better dependencies between the
constants are now known (see for example [4]).

Proposition 1.3 (Balog–Gowers–Szemerédi). Let A be a subset of an abelian group.
Suppose that |A| = n, and that there are at least cn3 quadruples (a1, a2, a3, a4) ∈ A4

such that a1 + a2 = a3 + a4. Then there is a set A′ ⊆ A with |A′| > 2−19c12n and
|A′ − A′| 6 257c−36|A′|.

2. the polynomial freiman-ruzsa conjecture

Write F∞2 for the vector space of countable dimension over the finite field F2. Let A ⊆ F∞2
have doubling at most K, meaning that we have the inequality |A+A| 6 K|A|. What
can be said about the structure of A?

It is hard to think of any examples of sets A with this property other than cosets of
subspaces, and large subsets of them. In fact, these are the only such examples as was
shown by Imre Ruzsa [14]. This is the finite field analogue of a celebrated theorem of
Freiman [5]. The best known bounds for a result of this type are due to Ruzsa and the
author [11]:

Theorem 2.1 (Freiman’s theorem in F∞2 ). Let A ⊆ F∞2 be a finite set with |A + A| 6
K|A|. Then A is contained within a coset of some subgroup H 6 F∞2 with |H| 6
K222K2−2|A|.

A version of this result, with somewhat weaker bounds, will be a consequence of Propo-
sition 2.2 below (which is also due to Imre Ruzsa).

Theorem 2.1 gives, in a weak sense, a complete description of sets with small doubling.
We showed that if |A + A| 6 K|A| then A is contained in a coset of a subspace of size

at most K222K2−2|A|; conversely, if A has this property then it is clear that |A+ A| 6
K222K2−2|A|. It would be of great interest to have a structure theorem which does not
result in exponential losses in K of this sort. Perhaps one can even arrange things so
that one has a result of the form

doubling constant K =⇒ structure =⇒ doubling constant K ′,

where K ′ is polynomial in K.

It is easy to see that such a structure theorem would have to take a form somewhat
different from Theorem 2.1. Indeed if one takes A ⊆ F∞2 to be a subspace H together
with K points x1, . . . , xK such that Span(x1, . . . , xK) ∩ H = {0} then it is clear that
|A+A| 6 K|A|, but that the smallest coset-of-a-subspace containing A has size roughly
2K |A|.

Ruzsa [14] reports that Katalin Marton has suggested that one should be looking for
a covering of A by a small number C1(K) of cosets of some rather smaller subspace of
size C2(K)|A|. I agree with this, and it is to some extent believeable that C1(K) and
C2(K) can be polynomial in K. This is what I shall call the Polynomial Freiman-Ruzsa
conjecture (PFR) – it will be introduced in more detail later.
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Imre Ruzsa indicated to me a large part of the following proposition giving a number
of statements equivalent to such a structure theorem.

Proposition 2.2 (Ruzsa). The following five statements are equivalent.

(1) If A ⊆ F∞2 has |A + A| 6 K|A|, then there is A′ ⊆ A, |A′| > |A|/C1(K), which
is contained in a coset of some subspace of size at most C2(K)|A|.

(2) If A ⊆ F∞2 has |A+A| 6 K|A|, then A may be covered by at most C3(K) cosets
of some subspace of size at most C4(K)|A|.

(3) If A ⊆ F∞2 has |A + A| 6 K|A|, and if additionally there is a set B, |B| 6 K,
such that A + B = A + A, then A may be covered by at most C5(K) cosets of
some subspace of size at most C6(K)|A|.

(4) Suppose that f : Fm2 → F∞2 is a function with the property that

|{f(x) + f(y)− f(x+ y) : x, y ∈ Fm2 }| 6 K.

Then f may be written as g + h, where g is linear and |Im(h)| 6 C7(K).
(5) Suppose that f : Fm2 → F∞2 is a function with the property that for at least

23m/K of the quadruples (x1, x2, x3, x4) ∈ Fm2 with x1 + x2 = x3 + x4 we have
f(x1) + f(x2) = f(x3) + f(x4). Then there is an affine linear function g : Fm2 →
F∞2 such that f(x) = g(x) for at least 2m/C8(K) values of x.

Furthermore if Ci(K) is bounded by a polynomial in K for all i ∈ I, where I is any of
the sets {1, 2}, {3, 4}, {5, 6}, {7}, {8} then in fact Ci(K) is bounded by a polynomial in
K for all i.

Remarks. Statement (4) is perhaps the most elegant and natural one here. Observe
also that (4) is rather easy with the bound C7(K) = 2K . Thus Proposition 2.2 implies a
weak version of Theorem 2.1. It is the possibility of polynomial bounds for Ci(K) that
is the most interesting feature of this proposition. Let us call this the PFR conjecture:

Conjecture 2.3 (Polynomial Freiman-Ruzsa conjecture for Fn2 ). The function C7(K)
(and hence all of the other functions Ci(K), i = 1, . . . , 8), can be taken to be polynomial
in K.

Ruzsa was probably the first to actually dare to conjecture this, and he certainly states
such a conjecture explicitly in [17]. Such matters are also touched upon (in the Z-
setting) in [2, 7].

The next section is devoted to the proof of Proposition 2.2. We do not purport to have
done this in the most efficient manner.

3. Proof of Proposition 2.2

.
(1) ⇔ (2). It is easy to see that (2) ⇒ (1). To go in the opposite direction, suppose

that A ⊆ F∞2 has |A + A| 6 K|A|. Using (1), we may pass to a subset A′ ⊆ A with
|A′| > |A|/C1(K) and such that A′ is contained in a coset of a hyperplane of size at
most C2(K)|A|. Apply Lemma 1.2 with S = A′, T = A and K ′ = KC1(K). We get a
set X, |X| 6 KC1(K), such that A ⊆ A′ − A′ +X. This immediately implies (2) with
C3(K) 6 KC1(K) and C4(K) = C2(K).

(2)⇔ (3). It is trivial that (2)⇒ (3). To proceed in the opposite direction, we apply
(3) to the set D = A−A. By Proposition 1.1, we have |D+D| = |2A− 2A| 6 K4|A| 6
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K4|D|. We claim that there is a set B, |B| 6 K8, such that D + B = D + D. To see
this, apply Lemma 1.2 with S = A, T = 2A − A and K ′ = K4 (this is a permissible
choice by another application of Proposition 1.1). We get a set X, |X| 6 K4, such that
2A−A ⊆ X+(A−A), which implies that 2A−2A ⊆ X+(A−2A) ⊆ X−X+(A−A).
This proves the claim, with B = X − X. Now apply (3) with to get that D, and
hence A, may be covered by at most C5(K

8) cosets of some subspace of size at most
C6(K

8)|D| 6 K2C6(K
8)|A|.

(4) ⇒ (3). Suppose that we have a set A ⊆ F∞2 with |A+ A| 6 K|A|, together with
a set B, |B| 6 K, such that A+ A ⊆ A+ B. Let H0 be a minimal subspace such that
the projection π : A→ H0 is one-to-one. Then π(A+ A) = π(A− A) = H0 (or else we
could find a smaller subspace). We define a map f : H0 → F∞2 as follows. Put some
fixed ordering on b, and for each x ∈ H0 pick the minimal b ∈ B such that x = π(a+ b)
for some a ∈ A, and set f(x) = a.

We claim that |{f(x) + f(y) − f(x + y) : x, y ∈ H0}| 6 K7. To see this, write
x = π(a1 + b1), y = π(a2 + b2) and x+ y = π(a3 + b3). Then

f(x) + f(y)− f(x+ y) = a1 + a2 − a3. (3.1)

Now we may pick a4 ∈ A, b4 ∈ B such that a1 + a2 = a4 + b4 and then a5 ∈ A, b5 ∈ B
such that a3 + a4 = a5 + b5. Summing gives

a1 + a2 − a3 = a5 + b4 + b5, (3.2)

whence (since π is linear and we are in characteristic two)

π(a5) = π(b1 + b2 + b3 + b4 + b5).

Since π is one-to-one on A, the number of possible values of a5 is thus at most K5.
From (3.2), we see that there are at most K7 possible values of a1 + a2 − a3 which, in
view of (3.1), implies our claim.

Now (4) implies that f = g + h, where g : H0 → F∞2 is linear and |Im(h)| 6 C7(K
7).

Statement (3) follows immediately with H = g(H0), and with C5(K) 6 C7(K
7),

C6(K) 6 K.

(1) ⇒ (5). Suppose that f : Fm2 → F∞2 is a function with the property we are
interested in, viz. that for at least 23m/K of the quadruples (x1, x2, x3, x4) ∈ Fm2 with
x1 + x2 = x3 + x4 we have f(x1) + f(x2) = f(x3) + f(x4). Consider the graph Γ =
{(x, f(x)) : x ∈ Fm2 } of f . The set Γ ⊆ Fm2 × F∞2 has cardinality N = 2m, and the
number of solutions to the equation t1 + t2 = t3 + t4 with ti ∈ Γ is at least N3/K.

It follows from Proposition 1.3 that there is Γ′ ⊆ Γ, |Γ′| > 2−19K−12N , such that
|Γ′ − Γ′| 6 257K36|Γ′|. Applying (2), we see that Γ′ may be covered by l = C3(2

57K36)
cosets H + x1, . . . , H + xl of some subspace H ⊆ Fm2 × F∞2 , |H| 6 C4(2

57K36)N .
By increasing l to C9(K) := C3(2

57K36)C4(2
57K36) if necessary, we may assume that

the projection π of H onto the first factor Fm2 is an isomorphism. By the pigeonhole
principle, there is some i such that |Γ′ ∩ (H + xi)| > |Γ′|/C9(K) > 2−19K−12N/C9(K).
Write Γ′′ = Γ′ ∩ (H + xi), and set E = π(Γ′′). It is clear that f |E is affine linear. This
confirms (5), with C8(K) = 219K12C9(K).

(5) ⇒ (4). Set N = 2n. Suppose that f : Fn2 → F∞2 is a map such that |B| 6 K,
where B := {f(x) + f(y)− f(x + y) : x, y ∈ Fn2}. A simple application of the Cauchy-
Schwarz inequality confirms that there are at least N3/K quadruples (x1, x2, x3, x4)
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with x1 + x2 = x3 + x4 and f(x1) + f(x2) = f(x3) + f(x4). Thus there is a set E ⊆ Fn2 ,
|E| > N/C8(K), such that f |E is affine linear. Write g : Fn2 → F∞2 for the extension of
this affine linear function to all of Fn2 .

Now Lemma 1.2 applies to show that there is a set T , |T | 6 C8(K), such that
T + E − E = Fn2 . However it is easy to confirm that

f(t+e1−e2) = f(e1)−f(e2)+f(t)+ b1− b2 = g(t+e1−e2)+f(t)−g(t)+g(0)+ b1− b2
for some b1, b2 ∈ B. Thus |Im(f − g)| 6 |T |2|B|2 6 C8(K)2K2. This concludes the
proof.

Remark. The equivalence of (1) – (4) could be shown without recourse to Proposition
1.3.

4. subplünneckarity

Recall, from §1, the statement of Plünnecke’s inequality. The reader may observe that
(1) of Proposition 2.2 implies a much stronger bound for some large subset A′ ⊆ A,
for large s, t, at least if there is a good bound on C2(K). We may call such an A′

subplünnecke. Nets Katz asked me to formulate a converse, that is to say a principle to
the effect that A being subplünnecke implies that A is very economically contained in
some coset of a subspace. The following result is my best effort so far in this direction:

Proposition 4.1. Let A ⊆ F∞2 , and suppose that there is a constant B such that
|tA| 6 tB|A| for all t > B logB. Then A is contained in a union of 2CB logB cosets of
some subspace having size at most |A|.

The proof of this proposition is a variant of Chang’s proof of Freiman’s theorem [3],
which is itself based on Ruzsa’s argument [15]. We will make use of the Fourier trans-
form. Recall that by fixing a basis (e1, . . . , en) for Fn2 one may identify the characters

on Fn2 with the group itself. Indeed if ξ ∈ Fn2 then the map x 7→ (−1)ξ
T x is a character,

and we may define the Fourier transform

f̂(ξ) :=
∑
x∈Fn

2

f(x)(−1)ξ
T x.

If A ⊆ Fn2 is a set then we write Â for the Fourier transform of the characteristic function
of A. See [8, §2] for more details.

The following very useful lemma of Chang says that if A ⊆ Fn2 then the set of points ξ

at which Â(ξ) is large has considerable structure.

Lemma 4.2 (Chang). Let A ⊆ Fn2 have cardinality αN , let ρ ∈ (0, 1) be a real number

and let Λ be the set of all ξ for which |Â(ξ)| > ρ|A|. Then Λ is contained in a subspace
of dimension at most 8ρ−2 log(1/α).

Remark. Chang [3] derived this result using an inequality of Rudin. See also [9]. In the
finite field case an alternative (though morally very similar) proof may be given using
an inequality of Beckner (see [10]).

In order to prove Proposition 4.1 we also need the notion of a Freiman isomorphism.
Suppose that A and B are subsets of abelian groups and that φ : A→ B is a map. Let
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k be a positive integer. We say that φ is a Freiman k-homomorphism if whenever

a1 + · · ·+ ak = a′1 + · · ·+ a′k

we have
φ(a1) + · · ·+ φ(ak) = φ(a′1) + · · ·+ φ(a′k).

If φ has an inverse which is also a Freiman k-homomorphism then we say that φ is a
Freiman k-isomorphism. In this case we write A ∼=k B.

Lemma 4.3. Let A ⊆ F∞2 , and suppose that |kA| 6 kB|A|. Then A is Freiman k-
isomorphic to a subset of Fn2 , where 2n 6 k4B|A|.

Proof. Take a minimal n such that there is a set S ⊆ Fn2 with S ∼=k A. For any x ∈ Fn2
there is a linear projection π : Fn2 → Fn−12 with ker(π) = 〈x〉. Any such projection
induces a Freiman homomorphism (of any order) on S. Thus, by minimality, π|S does
not have an inverse which is also a Freiman k-homomorphism. This means that there
are s1, . . . , sk, s

′
1, . . . , s

′
k ∈ S with

s1 + · · ·+ sk 6= s′1 + · · ·+ s′k

but
φ(s1) + · · ·+ φ(sk) = φ(s′1) + · · ·+ φ(s′k).

By our choice of π, this implies that

s1 + · · ·+ sk − s′1 − · · · − s′k = x.

Since x was arbitrary we have kS − kS = Fn2 . Since A ∼=k S, we have |kS| = |kA| 6
kB|A| = kB|S|. Applying Proposition 1.1 with sets S and (k − 1)S gives

|kS − kS| 6 |2(k − 1)S − 2(k − 1)S| 6 k4B|S|.
Hence we have the inequality 2n 6 k4B|A|, which is what we wanted to prove.

We call a Freiman isomorph of A which sits densely inside some subspace a model for
A. It is useful to have a good model for a set A, since the tools of Fourier analysis are
then available. The next lemma is an example of this. For more on models, see [11].

Lemma 4.4 (Chang-Bogolyubov). Suppose that A ⊆ Fn2 has density α, and let k be a
positive integer. Then kA− kA contains a subspace H 6 Fn2 with

codim(H) 6 32α−1/(k−1) log(1/α).

Proof. Set N = 2n, and let ρ = 1
2
α1/(2k−2). Let r2k(x) be the number of representations

of x as a1 + · · ·+ ak − a′1 − · · · − a′k. This being the convolution of k copies of A and k
copies of −A, we may write it using the Fourier inversion formula as

r2k(x) = N−1
∑
ξ

|Â(ξ)|2k(−1)ξ
T x. (4.1)

Observe that r2k(x) > 0 if and only if x ∈ kA−kA. Now split the sum (4.1) as Σ1 +Σ2,
where

Σ1 :=
∑

ξ:|Â(ξ)|>ρ|A|

|Â(ξ)|2k(−1)ξ
T x

and
Σ2 :=

∑
ξ:|Â(ξ)|<ρ|A|

|Â(ξ)|2k(−1)ξ
T x.
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By Lemma 4.2 there is a subspace H 6 Fn2 , codim(H) 6 8ρ−2 log(1/α), such that

ξTx = 0 whenever |Â(ξ)| > ρ|A| and x ∈ H. For x ∈ H, then, we have

Σ1 > |Â(0)|2k = α2kN2k.

We also have the estimate

|Σ2| 6 ρ2k−2α2k−2N2k−2
∑
ξ

|Â(ξ)|2 = ρ2k−2α2k−1N2k < Σ1.

Thus r2k(x) > 0 whenever x ∈ H, which proves the lemma.

Proof of Proposition 4.1. Let k = dB logBe. Since |4kA| 6 (4k)B|A|, we may apply
Lemma 4.3 to assert that A ∼=4k S, where S is a subset of Fn2 and 2n 6 (4k)4B|A|. Since
|S| = |A|, the density of S in Fn2 is at least σ := (4k)−4B. Now Lemma 4.4 guarantees
that kS − kS contains a subspace of size at least

2−32σ
−1/(k−1) log(1/σ)|A| = 2−128B(4k)4B/(k−1) log(4k)|A| > 2−CB logB|A|,

for some absolute constant C. Since kS − kS ∼=2 kA − kA, this means that kA − kA
also contains a subspace of this size, which we shall call H.

Now by assumption we have

|A+H| 6 |(k + 1)A− kA| 6 (2k + 1)B|A| 6 2C
′B logB|H|,

and so by Lemma 1.2 we may find X, |X| 6 2C
′B logB, such that A ⊆ X+H−H. Thus

A is indeed contained in the union of 2C
′B logB cosets of some subspace of size at most

|A|.
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258 (1999), xv, 323–326.



8 BEN GREEN

[15] , Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), no. 4,
379–388.

[16] , An application of graph theory to additive number theory, Scientia, Ser. A 3 (1989), 97–109
[17] , Sumsets, submitted to proceedings of the European Congress of Mathematicians, Stock-

holm 2004.
[18] T. C. Tao and V. Vu, Additive Combinatorics, book in preparation.

Trinity College, Cambridge, CB2 1TQ
E-mail address: bjg23@hermes.cam.ac.uk


