MATRICES FOR O; (q), G2(q) AND 3D4(q)

NICK GILL

1 August 2024: Daniele Garzoni pointed out a couple of things that needed correcting,
plus some extra observations, so I have edited accordingly. Grazie mille, Daniele!

1. INTRODUCTION

I want to try and understand the triality automorphism for OF () from the “classical” point of view.
The presence of triality makes sense if we think of Of (¢) as Dy4(g), but I fail to see how triality is natural
when we consider the usual 8-dimensional vector space over F,. My main text for reference is [Car89].

My investigations start by listing the positive D4 roots, assigning a roman letter to each one.:

Height Roots
L] @ e % [ % @
2 | @ 0% @
3 (my 10 ) O () 1
4w H
5 o 13

TABLE 1.1. Roots of Dy

Now I can use the assigned Roman letter to identify the root groups in, U, a Sylow p-subgroup of
O (). Consider an ordered hyperbolic basis:

B = {e1,e2,€3,¢€4, fa, f3, f2, f1}.

Now we can think of root groups using the following diagram:

1 a e 5 h k 14
1 6 f g i -/
1 ¢ d —i =k
1 —d —g -—h
1 —c —f —J
1 —-b -—e
1 —a

This diagram should be interpreted as follows. The root group X, is the one corresponding to the root a
in the table above. It is obtained by setting all other letters in the matrix to 0, and allowing the variable
a to range over all values of F,. The ¢ matrices so obtained form an elementary-abelian group of order
q. The same applies for all other roots.

In this way one obtains 12 root groups and now U is the product of these. Note that you don’t get
the elements of U by just letting the 12 variables in the matrix above range over Fj,.

To get a look at triality, one might try to write down the four parabolic subgroups containing P. Let’s
label these as P,, P, P. and Py. To obtain P, we take @ and then throw in all negative fundamental
root groups apart from X_, (the negative root group being just the transpose of the positive one).

Of the four resulting parabolics, we find that P; is of one isomorphism class (it stabilizes a 2-space),
while the others are all isomorphic (joined by triality) with P, stabilizing a 1-space, and P, and P,
stabilizing different 4-spaces.

The Levi-factors of P,, P. and P; are all of type A3 — let us see how they intersects () in each case
(using a similar scheme to above):
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1 1 a e h
1 b f g 1 1 0 g
1 ¢ d —1 1 d
) 1 —d —g ) 1 —-d —g —h
QNP,: 1 —c —f , QNP : 1
1 b 1 —-b -—e
1 1 —a
1 1
1 a e 3
1 b f
1 ¢
1
and QN Py : 1 —c —f —j
1 b —e
1 —a
1

Notice that Q@ N P, “looks like” the Sylow p-subgroup of Of (¢) which is of type D3 = Az. On the other
hand @ N P; is very clearly isomorphic to the sylow P-subgroup of SL4(g) which is of type As. And
finally, @ N P. looks like, well, a corrupted version of SLs(g). Not so insightful then — I still don’t feel
like I really get triality when I think about the classical theory of OF (¢). I await inspiration to strike...

2. G2(q)

An unexpected bonus coming out of this analysis was that I can write down the matrices for the
“natural” 8-dimensional representation of G3(g). This is because Gz2(gq) can be seen as the centralizer of
a triality automorphism g of Og (¢). In terms of roots, we have:

G5 root | Length Corresponding Og (q) roots
(A)o1 | short | (a) 10 | () O | (@ 090
(B)10 | long | (b Of°
(€) 11 | short | (&) 1O | (p) Ot | (9 OF°
(012 | shore | () 10 [ 01 ) 1!
(E)13 | long | (k) 11
(F)23 | long | (¢ 31

TABLE 2.1. Roots of G5

As before I have assigned a Roman letter to each root of Gg, this time the letter being capital. The
corresponding root group in G5 will then be a subgroup of a product of some root groups in O; (9)-
When the root is long, the root groups of Gz(q) correspond to root groups of Og (¢). If the root is short,
we do like this:

X4 = A{za(t).xc(t)zq(t) |t € Fyl,
so X4 is some kind of “diagonal” subgroup of the product X,X.X, (note that, thanks to living in a

beneficent universe, this product is itself a group). One needs to be a bit careful writing down the actual
elements of X 4. They are:

1 ¢
1
1t t —t?
—t
1 —t ’
1
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with ¢ ranging over F,. Nonetheless, if one is willing to take care in this way, then one can represent the
root groups of G3(q) using a similar scheme to that previously, modifying the interpretation of short root
groups appropriately.

1 ACc DD E F —F
1 B C C D -D* —F
1 A A -A> -D -E
1 A4 -C -D
(1) 1 -A -C -D
1 -B —-C
1 —A
|

I didn’t bother specifying the split torus above for OF (¢) as it is obvious. However, for the Ga(q) case, it
is worth noting it down (using Carter’s results about the H-group in [Car89]). It is the product of these
two groups:

Hy =diagly, vy 5 v% 1L, 1L,y 2y, v Y]
Hp = diag[l, z, 271, 1,1, z, 271, 1]

where z and y, as usual, range over F,.

Working out the parabolic subgroups for Ga(q) is nice and easy — in both cases the Levi factor is a
GL2(q) and the unipotent radical has size ¢°. I find it interesting, though, to see that the action of the
Levi on the unipotent radical is different in each:

(1) In Pg, where we add the root X_4 to our positive root groups, we find that the Levi factor
normalizes Xr.

(2) In P4, where we add the root X_p to our positive root groups, we find that the Levi factor does
not normalize any single root group in the unipotent radical. Instead it normalizes Xg. Xp.

2.1. A remark from Daniele. Although the description just given is about the embedding G2(q) <
Oj (2), one can observe that in fact the subgroup Gz(q) stabilizes the 7-subspace W = (e1, e1, €3,4 +f1, f3, f2, 1),
centralizing e4 — f4. So we can easily obtain an embedding G2(q) < O7(q).

Further, if ¢ is even, then the subgroup Ga(q) centralizes es + f4 so if we pass to the action on
the quotient W/(eq + f4) (for which we can use the basis {ey, s, e3, f3, f2, f1}), then we get a concrete
description of the embedding into Spg(q).

3. 3Da(q)

The next bit really surprised me: pretty much all the work we did for Ga(g) now carries over to
G =3 D4(q), by remembering that we can see G as the centralizer in OF (¢°) of gf where g is the triality
automorphism discussed above, and f : ¢t — t? is the Frobenius automorphism.

Now the roots for G listed in Table also apply for Dy (q) with the same root groups of Oy (q) here
as there. Similarly the scheme written at also applies, however, we should just be careful to adjust
our interpretation:

(1) If the corresponding G2 root is long, then our root group is obtained by taking the corresponding
root group in Of (¢®) and ranging over Fy. So, for example,

Xp = {m(t) | t € Fq}.

(2) If the corresponding G root is short, then we need, first, to be careful with our choice of g. Let’s
take g here to be the automorphism that moves the roots of D4 as follows

g:(a) — (c) — (d) — (a).
Then we must adjust the root as we go along by f. Thus,
Xa = {20 (t).2(t7).2a(tT) | t € Fy}.

It is important to observe that changing the order of the product in the short roots doesn’t make
any difference, i.e.

ZTa(t1)xe(to)za(ts) = xa(t)za(ts)zc(te) = za(ts)za(tr)xc(te) = - -
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and this guarantees that X 4 really does centralize g f. It’s probably worth just noting down what
the elements of X 4 look like as matrices:

1t
1
1 0 0 —gatd
1 —a”
1 —t4 ’
1
1 —t
1

As before we can write down the split torus here. It is the product of these two groups:
Ha =diagly, y=", y* 7, y7 79, 4077,y y, 7Y
Hp = diag[l, z, 7', 1,1, 2, 71, 1]

where x ranges over F; and y ranges over Fgs.
Again, working out the parabolics is easy.

(1) In Pg, where we add the root X_4 to our positive root groups, we find that the Levi factor is of

type A1(¢*).
(2) In P4, where we add the root X_p to our positive root groups, we find that the Levi factor is of

type A1(q).
Analysing the action on the unipotent radical is straightforward.
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